• 제목/요약/키워드: modified census transform features

검색결과 9건 처리시간 0.02초

환경변화에 강인한 눈 검출 알고리즘 성능향상 연구 (Performance Improvement for Robust Eye Detection Algorithm under Environmental Changes)

  • 하진관;문현준
    • 디지털융복합연구
    • /
    • 제14권10호
    • /
    • pp.271-276
    • /
    • 2016
  • 본 논문에서는 조명 및 Pose 등의 다양한 환경변화에 강인한 얼굴 및 눈 검출 알고리즘을 제안한다. 일반적으로 눈 검출은 얼굴검출과 동시에 수행되며 조명 및 Pose의 변화에 따라 검출 성능에 영향을 준다. 본 논문에서는 Modified Census Transform 알고리즘 사용하여 환경변화에 강인한 얼굴검출을 수행한다. 눈은 얼굴영역의 중요한 특징으로 주변의 조명 변화 및 안경 등의 다양한 요인으로 검출 성능의 저하 요인이 된다. 이러한 문제점의 해결을 위하여 Gabor transformation과 Feature from Accelerated Segment Test 알고리즘 기반의 눈 검출 알고리즘을 제안한다. 제안된 얼굴검출 알고리즘은 27.4ms의 검출속도와 98.4%의 검출율을 보이며, 눈 검출 알고리즘의 경우 36.3ms의 검출속도와 96.4%의 검출율을 보이는 것을 확인하였다.

지능형 자동차를 위한 조명 변화에 강인한 도로표지판 검출 및 인식 (An Illumination Invariant Traffic Sign Recognition in the Driving Environment for Intelligence Vehicles)

  • 이태우;임광용;배건태;변혜란;최영우
    • 정보과학회 논문지
    • /
    • 제42권2호
    • /
    • pp.203-212
    • /
    • 2015
  • 본 논문은 도로주행 영상에서 도로표지판을 인식하는 방법을 제안한다. 지능형 차량에서 얻어지는 도로표지판 영상은 일반적인 사물 영상과는 다른 두 가지 특징이 있다. 첫째는 대상이 되는 사물들은 종류가 제한적이고 형태가 단순한 도형인 경우가 대부분이다. 둘째는 일반적인 도로주행 영상은 다양한 조명 환경과 날씨 상태로 인해서 선명한 영상을 취득하기 어려운 점이다. 본 논문에서는 조명 변화가 심한 도로주행 영상에 대해서 효과적으로 특징을 추출하기 위해서 Modified Census Transform(MCT)을 개선한 특징추출 방법을 제안한다. 추출된 특징들은 히스토그램으로 쌓여지고 영상 전반에 걸쳐 아주 고차원의 기술자(Descriptor)로 변환되며, 변환된 수많은 기술자들은 가우시안 혼합 모델(Gaussian Mixture Model)을 활용한 Fisher-vector 방법에 의해서 저차원으로 변형하여 특징으로 사용한다. 본 논문에서 제안하는 방법은 일반적인 표지판 인식 방법에 비해서 조명변화에 강한 검출 결과를 보여주었으며, 실시간 검출 및 인식도 가능하였다.

운전자 졸음 검출을 위한 눈 개폐 검출 알고리즘 연구 (A Study on an Open/Closed Eye Detection Algorithm for Drowsy Driver Detection)

  • 김태형;임웅;심동규
    • 전자공학회논문지
    • /
    • 제53권7호
    • /
    • pp.67-77
    • /
    • 2016
  • 본 논문에서는 변형된 하우스더프 거리 (MDH: Modified Hausdorff Distance)를 이용한 눈 개폐 감지 알고리즘을 제안한다. 제안하는 알고리즘은 얼굴 검출과 눈 개폐 감지로 크게 구분된다. 얼굴 영역의 검출을 위하여 고정 크기의 영역 내에서 픽셀 값을 이용하는 지역 구조특성의 MCT (Modified Census Transform)특징기반 방법을 사용하였다. 이후, 검출된 얼굴 영역 내에서 MHD를 이용하여 눈의 위치 및 개폐를 판단한다. 얼굴 검출의 처리절차는 먼저, 오프라인에서 다양한 얼굴 영상에 대해 MCT 이미지를 생성하고, 이를 기반으로 PCA를 이용하여 기준이 되는 특징벡터들을 추출한다. 다음으로, 온라인에서는 입력되는 실험 영상 내에서 새롭게 추출된 특징벡터들과 기준이 되는 특징 벡터들 간의 유클리드 거리를 이용하여 얼굴 영역을 검출하는 순서로 진행된다. 이후, 검출된 얼굴 영역 내에서 MHD 기반의 눈 영역 검출과 템플릿 매칭을 수행하여 눈의 개폐를 감지한다. 제안하는 방법의 성능 검증을 위하여 그레이 스케일 영상 (30FPS, $320{\times}180$)을 입력으로 실험을 수행한 결과, 눈 계폐 검출율에서 평균 94.04%의 정확도를 달성하였다.

안드로이드 환경의 다중생체인식 기술을 응용한 인증 성능 개선 연구 (Enhancement of Authentication Performance based on Multimodal Biometrics for Android Platform)

  • 최성필;정강훈;문현준
    • 한국멀티미디어학회논문지
    • /
    • 제16권3호
    • /
    • pp.302-308
    • /
    • 2013
  • 본 논문은 모바일 환경에서의 다중생체인식을 통한 개인인증 시나리오에서 false acceptance rate (FAR)가 향상된 시스템을 제안한다. 다중생체인식을 위하여 얼굴인식과 화자인식을 선택하였으며, 시스템의 인식 시나리오는 다음을 따른다. 얼굴인식을 위하여 Modified census transform (MCT) 기반의 얼굴검출과 k-means 클러스터 분석 (cluster analysis) 알고리즘 기반의 눈 검출을 통해 얼굴영역 전처리를 수행하고, principal component analysis (PCA) 기반의 얼굴인증 시스템을 구현한다. 화자인식을 위하여 음성의 끝점추출과 Mel frequency cepstral coefficient (MFCC) 특징을 추출하고, dynamic time warping (DTW) 기반의 화자 인증 시스템을 구현한다. 그리고 각각의 생체인식을 본 논문에서 제안된 방법을 기반으로 융합하여 인식률을 향상시킨다. 본 논문의 실험은 Android 환경에서 수행하였으며, 구현한 다중생체인식 시스템과 단일생체인식 시스템과의 FAR을 비교하였다. 단일 얼굴인식의 FAR은 4.6%, 단일 화자인식의 FAR은 6.7%로 각각 나타났으며, 제안된 다중생체인식 시스템의 FAR은 1.8%로 크게 감소하였다.

도로주행 영상에서의 차량 번호판 검출 (Vehicle License Plate Detection in Road Images)

  • 임광용;변혜란;최영우
    • 정보과학회 논문지
    • /
    • 제43권2호
    • /
    • pp.186-195
    • /
    • 2016
  • 본 논문에서는 도로주행 영상에서의 자동차 번호판 검출방법을 제안한다. 제안하는 방법은 조명변화에 강인한 8bit-MCT 특징과 랜드마크 기반의 Adaboost 알고리즘을 이용하여 번호판 후보 영역을 생성하고, Adaboost의 검출 스코어를 이용하여 번호판의 위치를 확률로 추정하는 현저도 지도를 생성한다. 현저도 지도에서 임계값 이상의 영역을 번호판 후보 영역으로 검출하고, 각 후보 영역에 대하여 지역분산을 이용하여 영역을 보정한 후 SVM과 8bit-MCT의 히스토그램을 특징으로 사용하여 영역을 검증하고 자동차 번호판 영역을 확정한다. 본 논문에서 제안한 방법을 한국과 유럽의 다양한 도로주행 영상에 적용하여 85%의 안정적인 검출 성능을 실험을 통하여 입증하였다.

Gender Classification of Low-Resolution Facial Image Based on Pixel Classifier Boosting

  • Ban, Kyu-Dae;Kim, Jaehong;Yoon, Hosub
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.347-355
    • /
    • 2016
  • In face examinations, gender classification (GC) is one of several fundamental tasks. Recent literature on GC primarily utilizes datasets containing high-resolution images of faces captured in uncontrolled real-world settings. In contrast, there have been few efforts that focus on utilizing low-resolution images of faces in GC. We propose a GC method based on a pixel classifier boosting with modified census transform features. Experiments are conducted using large datasets, such as Labeled Faces in the Wild and The Images of Groups, and standard protocols of GC communities. Experimental results show that, despite using low-resolution facial images that have a 15-pixel inter-ocular distance, the proposed method records a higher classification rate compared to current state-of-the-art GC algorithms.

인공 신경망을 이용한 영상의 유해성 결정 (Decision of Image Harmfulness Using an Artificial Neural Network)

  • 장석우;박영재;변시우
    • 한국산학기술학회논문지
    • /
    • 제16권10호
    • /
    • pp.6708-6714
    • /
    • 2015
  • 언제 어디서나 사용하기 편리한 인터넷을 통해서 다양한 종류의 멀티미디어 콘텐츠가 자유롭게 유통되고 있는 반면, 어린이나 청소년에게 유해할 수 있는 영상 콘텐츠도 쉽게 얻을 수 있는 환경이 마련되어서 사회적으로 문제가 되고 있다. 본 논문에서는 인공 신경망을 이용하여 입력 영상의 유해성 유무를 자동으로 결정하는 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 입력 영상으로부터 MCT 특징을 기반으로 사람의 얼굴 영역을 검출한다. 그런 다음, 색상 특징을 활용하여 피부 색상 영역을 찾고, 유두의 후보 영역들을 추출한다. 마지막으로 계층적인 인공 신경망을 활용하여 유두의 후보 영역들 중에서 실제적인 유두 영역만을 필터링함으로써 입력 영상의 유해성 유무를 확인한다. 본 논문의 실험결과에서는 인공 신경망을 이용한 제안된 방법이 입력되는 영상에서 유두 영역을 보다 강건하게 검출함으로써 영상의 유해 정도를 효과적으로 결정한다는 것을 보여준다.

조명변화에 강인한 MCT와 프레임 연관성 기반 실시간 얼굴인식 시스템 (Real-Time Face Recognition System Based on Illumination-insensitive MCT and Frame Consistency)

  • 조광신;박수경;심동규;이수연
    • 전자공학회논문지CI
    • /
    • 제45권3호
    • /
    • pp.123-134
    • /
    • 2008
  • 본 논문은 조명 변화에 강인한 실시간 얼굴인식 시스템을 제안한다. 이를 위하여 제안한 알고리즘에서는 다양한 조명 조건에서도 강인한 얼굴 영상의 지역적 구조 특징을 추출하고, 추출된 특징을 이용하여 외형기반 얼굴인식 방법을 수행하였다. 또한 실시간 얼굴인식 시스템의 경우 연속적으로 영상을 획득하는 동안 발생하는 블러링 된 영상, 측면영상 등 얼굴 인식에 적합하지 않은 영상에 대한 인식 결과를 출력하게 된다. 따라서 이러한 잘못된 인식 결과들을 제거하고, 프레임 사이의 연속된 인식 결과를 고려하여 인식결과를 출력함으로써 결과의 안정성을 확보할 수 있는 방법을 함께 제안한다. 실험 결과에서는 제안한 알고리즘의 조명변화에 대한 성능을 평가하기 위해 Yale database를 사용하여 기존 외형기반 알고리즘과 비교하였다. 그 결과 다양한 조명 조건에서의 인식률이 기존 방법보다 20% 정도 향상 되었다. 또한 연속적으로 영상을 취득하는 시스템에서 제안한 방법의 얼굴 인식 성능을 평가한 결과 매 프레임 결과를 출력하는 방법에 비해 안정적인 성능을 보였다.

깊이영상에서 실시간 얼굴 검출을 위한 I-MCTBoost (The I-MCTBoost Classifier for Real-time Face Detection in Depth Image)

  • 주성일;원선희;최형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.25-35
    • /
    • 2014
  • 본 논문에서는 실시간 얼굴 검출을 위한 부스팅 기반 분류 방법을 제안한다. 제안하는 방법에서는 조명과 얼굴크기 및 변형에 강건하게 얼굴을 검출하기 위해 깊이영상을 이용하고, 깊이차이특징을 사용하여 I-MCTBoost 분류기를 통해 학습 및 인식을 수행한다. I-MCTBoost는 약분류기로 구성된 강분류기들의 연결을 통해 인식을 수행한다. 약분류기의 학습 과정은 깊이차이특징을 생성하고, 이중에서 8개의 특징을 조합하여 약분류기를 구성하며 이때 각 특징은 2진비트(binary bit)로 표현된다. 강분류기는 정해진 약분류기의 개수만큼 반복적으로 약분류기를 선택하는 과정을 통해 학습이 이루어지며, 학습 과정에서 학습 샘플의 가중치를 갱신하고 학습 데이터를 추가하여 강건한 분류를 수행할 수 있도록 한다. 본 논문에서는 깊이차이특징에 대해 설명하고 이를 이용한 I-MCTBoost의 약분류기 학습 방법과 강분류기 학습 방법에 대해 제안한다. 마지막으로 제안된 분류기를 기존 MCT를 이용한 분류기와 정성적, 정량적 분석을 통해 비교하고 제안한 분류기의 타당성과 효율성을 입증한다.