• Title/Summary/Keyword: modified amine

Search Result 112, Processing Time 0.029 seconds

Effect of organoclay on the dynamic properties of SBR compound reinforced with carbon black and silica (유기화 클레이의 첨가가 실리카 및 카본블랙를 함유한 SBR 복합체의 동적 특성에 미치는 영향)

  • Son, M.J.;Kim, W.
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.260-267
    • /
    • 2006
  • SBR (styrene-butadiene rubber; 25 wt% of solid contents) nanocomposites reinforced with OLS(organically modified layered silicates) were manufactured via the latex method. Two types of OLS are prepared, i.e. dodecylamine (primary amine) modified montmorillonite (DA-MMT) and N, N-dimethyldodecylamine (tertiary amino) modified MMT (DDA-MMT). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed to characterize the layer distance of OLS and the morphology of the nanocomposites. SBR nanocomposites reinforced with ternary phase filler (carbon black/silica/OLS) systems also manufactured. Dynamic mechanical thermal analysis (DMTA) was performed on these composites to determine the loss factor (tan $\delta$) over a range of temperature($-20^{\circ}C{\sim}80^{\circ}C$). The results showed that there was significant changes on the values or tan $\delta$ with the addition of small amount of the OLS. By increasing the contents of OLS, the values of tan $\delta$ at $0^{\circ}C$ increased but those of tan $\delta$ at $60^{\circ}C$ decreased with increasing OLS contents.

Matrix effect on the Determination of Inorganic Priority Pollutants in Sludges (오니 시료중의 무기 Priority Pollutants의 분석 과정에 미치는 매질의 영향)

  • Lee, Huk-Hee;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.297-304
    • /
    • 1998
  • The three analysis methods, EPA method 3050, the method offered by Ministry of Environment in Korea, and modified method corrected in this laboratory, were studied to investigate the effect of matrix on the analysis of inorganic priority pollutants. 7 inorganic priority pollutants(Ni, Cr, Cu, Zn, Pb, Cd, Hg) were spiked to the plating, leather, paper, electric, and dye sludges. Mean recovery of the elements except Hg was 95.5% when the procedure of EPA method was applied. However, recovery by the two other extraction methods showed 11.1% and 27.7%, respectively. Digestions were done by MDS (microwave digestion system) and $HNO_3+HClO_4$ methods. To study organic and inorganic matrix effect, samples were made by adding triethanol amine as a organic matrix and $FeCl_3{\cdot}6H_2O$+$AlCl_3{\cdot}6H_2O$ as a inorganic matrix, respectively. The extracts were analyzed by AAS and HG-AAS. Mean recovery of the elements by the $HNO_3+HClO_4$ procedure, except Hg, gave better result than that of the MDS method. Mean recovery of elements was decreased when organic and inorganic matrices were added in the sludge samples. The procedure of MDS and $HNO_3+HClO_4$ digestion gave higher recoveries than that of direct analysis. In general, the results of the studies showed a significant matrix effect on the inorganic priority pollutants analysis in sludges.

  • PDF

Gas Permeation Characteristics of PEBAX Mixed Matrix Membranes Containing Polyethylenimine-modified GO (Polyethylenimine으로 개질된 GO를 함유한 PEBAX 혼합막의 기체투과 특성)

  • Yi, Eun Sun;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.404-416
    • /
    • 2021
  • In this study, a mixed matrix membrane was prepared by varying the contents of GO and PEI-GO synthesized in PEBAX2533, and the permeation characteristics of N2 and CO2 were studied. The N2 and CO2 permeability of the PEBAX/GO mixed membrane decreased as the GO content increased, and showed the highest CO2/N2 selectivity of 58.9 at GO 0.3 wt%. For the PEBAX/PEI-GO mixed membrane, the N2 permeability decreased as the PEI-GO content increased, and the CO2 permeability showed a different trend according to the PEI-GO content. Overall, the CO2/N2 selectivity was higher than that of the PEBAX/GO mixed membrane. In particular, PEI-GO 0.3 wt% showed the highest CO2/N2 selectivity of 73.5 among the mixed membranes, and a positive result was obtained as it was located above the Robeson upper bound. This is believed to be due to the molecular sieving channel effect resulting from the original GO structure, the functional groups present in the structure of GO having affinity for CO2, and the effect of amine bound to PEI by modifying GO into PEI.

Fabrication and Characterization of Pyrolyzed Carbon for Use as an Electrode Material in Electrochemical Biosensor (전기화학 바이오센서의 전극물질로 응용을 위한 열분해 탄소의 제작 및 특성 연구)

  • Lee, Jung-A.;Hwang, Seong-Pil;Kwak, Ju-Hyoun;Park, Se-Il;Lee, Seung-Seob;Lee, Kwang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.986-992
    • /
    • 2007
  • This paper presents the fabrication and characterization of carbon films pyrolyzed with various photoresists for bioMEMS applications. To verify the usefulness of pyrolyzed carbon films as an electrode material in an electrochemical biosensor developed by the authors, interactions between avidin and biotin on the pyrolyzed carbon film were studied via electrochemical impedance spectroscopy based on electrostatic interactions between avidin and negatively-charged ferricyanide. The pyrolyzed carbon films were characterized using a surface profiler, a precision semiconductor parameter analyzer, a nanoindentor, scanning electron microscopy, and atomic force microscopy. Amine conjugated biotin was immobilized on the electrode using EDC/NHS as crosslinkers after $O_2$ plasma treatment to enhance functional groups on the carbon electrode pyrolyzed at $1000^{\circ}C$ with AZ9260. The detection of avidin binding with different concentrations in a range of 0.75 nM to $7.5\;{\mu}M$ to the pyrolyzed carbon electrode modified with biotin was carried out by measuring the electrochemical impedance change. The results show that avidin binds to the biotin on the electrode not by non-specific interaction but by specific interaction, and that EIS successfully detects this binding event. Pyrolyzed carbon films are a promising material for miniaturization, integration, and low-cost fabrication in electrochemical biosensors.

Characterizationof Graphene Modified by Self-Assembled Monolayers on Polyethylene Terephthalate Film

  • Jo, Ju-Mi;Jeong, Dae-Seong;Kim, Yu-Seok;Song, U-Seok;Adhikari, Prashanta Dhoj;Cha, Myeong-Jun;Lee, Su-Il;Jeong, Sang-Hui;Park, Sang-Eun;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.616-616
    • /
    • 2013
  • 그래핀(Graphene)은 열전도도가 높고 전자 이동도(200,000 cm2V-1s-1)가 우수한 전기적 특성을 가지고 있어 전계 효과 트랜지스터(Field effect transistor; FET), 유기 전자 소자(Organic electronic device)와 광전자 소자(Optoelectronic device) 같은 반도체 소자에 응용 가능하다. 최근에는 아크 방출(Arc discharge method), 화학적 기상 증착법(Chemical vapor deposition; CVD), 이온-조사법(Ionirradiation)등을 이용한 이종원자(Hetero atom)도핑과 화학적 처리를 이용한 기능화(Functionalization)등의 방법으로 그래핀의 전도도를 향상시킬 수 있었다. 그러나 이러한 방법들은 기판의 표면을 거칠게 하며, 그래핀에 많은 결함들이 발생한다는 단점이 있다. 이러한 단점을 극복하기 위해 자가조립 단층막법(Self-assembled monolayers; SAMs)을 이용하여 기판을 기능화한 후 그 위에 그래핀을 전사하면, 자가조립 단층막의 기능기에 따라 그래핀의 일함수를 조절 가능하고 운반자 농도나 도핑 유형을 변화시켜 소자의 전기적 특성을 최적화 할 수 있다 [1-3]. 본 연구에서는 PET(polyethylene terephthalate) 기판에 SAMs를 이용하여 유연하고 투명한 그래핀 전극을 제작하였다. 산소 플라즈마와 3-Aminopropyltriethoxysilane (APTES)를 이용하여 PET 기판 표면 위에 하이드록실 기(Hydroxyl group; -OH)와 아민 기(Amine group; -NH2)를 순차적으로 기능화 하였고, 그 위에 화학적 기상 증착법을 이용하여 합성한 대면적의 균일한 그래핀을 전사하였다. PET 기판 위에 NH2 그룹이 존재하는 것을 접촉각 측정(Contact angle measurement)과 X-선 광전자 분광법(Xray photoelectron spectroscopy: XPS)을 통해 확인하였으며, NH2그룹에 의해 그래핀에 도핑 효과가 나타난 것을 라만 분광법(Raman spectroscopy)과 전류-전압 특성곡선(I-V characteristic curve)을 이용하여 확인하였다. 본 연구 결과는 유연하고 투명한 기판 위에 안정적이면서 패턴이 가능하기 때문에 그래핀을 기반으로 하는 반도체 소자에 적용 가능할 것이라 예상된다.

  • PDF

Interfacial Evaluation and Damage Sensing of Carbon Fiber/Epoxy-AT-PEI Composite using Electro-Micromechanical Techniques (Electro-micromechanical 시험법을 이용한 탄소섬유 강화 Epoxy-AT PEI 복합재료의 손상 감지능 및 계면물성 평가)

  • Kim, Dae-Sik;Kong, Jin-Woo;Park, Joung-Man;Kim, Minyoung;Kim, Wonho;Ahn, Byung-Hyun;Park, Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.212-215
    • /
    • 2002
  • Interfacial evaluation and damage sensing of the carbon fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composites were performed using micromechanical test and electrical resistance measurement. As AT-PEI content increased, the fracture toughness of epoxy-AT-PEI matrix increased, and thus their interfacial shear strength (IFSS) was improved due to the improved toughness. After curing process, the changes in electrical resistance (ΔR) with increasing AT-PEI contents increased gradually because of the changes in thermal expansion coefficient (TEC) and thermal shrinkage of matrix. Matrix fracture toughness was correlated to the IFSS, residual stress and electrical resistance. The results obtained from the electrical resistance measurement during curing process, reversible stress/strain, and durability test were consistent with modified matrix toughness properties.

  • PDF

Study on CMPO (Carbamoylphosphate) derivative functionalized ordered mesoporous silicates for selective removal of lanthanide (희토류 원소의 분리를 위한 표면 개질 된 메조 다공성 실리케이트의 개발에 관한 연구)

  • Kwon, Bob Jin;Jung, Hyun;Kim, Jong Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.291-298
    • /
    • 2012
  • Carbamoylphosphate (CMPO) [CMPO analogue; 2-(diphenylphosphoryl)-N-(3-(triethoxysilyl)propyl)acetamide]silane, as a functional self-assembled molecules, grafted mesoporous silicates were prepared by simple hydrolysis and condensation reaction. Pore sized tailored mesoporous silicates such as MCM-41, SBA-15, or amorphous silica nanoparticles were adopted as host materials. The surface area of ordered mesoporous silicates was ranged from 680 $m^2/g$ to 1310 $m^2/g$ with different pore diameters that estimated to be ca. 2.3~9.1 nm by BJH method. Among the OMMs host materials, SBA-15(II) has higher loading ratio (~35 wt%) of CMPO derivative than other OMMs. Accessibility to CMPO silane functional groups in the surface of mesoporous silicas was studied by lanthanide ions sorption experiments. All of the CMPO modified OMMs favors the smaller Eu(III) and Nd(III) cations than La(III) for relative larger ionic radius.

Preparation and Property of POSS-Based Organic-Inorganic Hybrid Filler and Polyamide Thermoplastic Elastomer (PA-TPE)/POSS Nanocomposite (POSS 기반 유-무기 하이브리드 충전제와 폴리아미드계 TPE로 이루어진 나노복합체의 제조 및 특성)

  • Han, Jae Hee;Kim, Hyung Joong
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • Commercially available polyamide thermoplastic elastomer (PA-TPE) was blended with hybrid filler which was prepared by means of the reaction between polyhedral oligomeric silsesquioxane (POSS) containing amine group and toluene diisocyanate (TDI)-caprolactam (CL) to explore the effect of blending the hybrid filler with the TPE. The chemical structure of the filler was identified by using FTIR and $^1H$ NMR. The composites, PA-TPE/POSS-(TDI+CL), which were the blends of TDI+CL modified POSS filler and PA-TPE up to 7 wt%, showed better elastic recovery delivered from lower tension setting compared to the PA-TPE and the PA-TPE/octaphenyl POSS blend. In addition the tensile strength and the initial modulus increased with increasing the hybrid filled content. Consequently it was assumed that the POSS-(TDI+CL) filler was a suitable material for enhancing strength and modulus without loss of elastic properties for the original PA-TPE.

Permeation Characteristics of $CO_2/N_2$ Mixture Gases through Plasma Treated Poly (methylpentene) Membrane (플라즈마 처리에 의한 폴리메틸펜텐 막의 $CO_2/N_2$ 혼합가스의 투과특성)

  • Jeong, Sung-Woo;Kwak, Hyun;Bae, Seong-Youl
    • Membrane Journal
    • /
    • v.13 no.2
    • /
    • pp.73-80
    • /
    • 2003
  • Abstract: The surfaces of poly (methylpentene)(PMP) were modified by Af and $NH_3$ plasma treatment, and their effects on permeation characteristics were investigated. The mole ratio of O/C in the surface was increased with Ar plasma treatment and consequently the surface became hydrophilic because of the possible formation of -OH, -COOH and C=O. The surface treated by $NH_3$ plasma also became hydrophilic due to the formation of amine and/or amide groups. The $CO_2$ permeability and its actual selectivity over N_2$ were 182 baller and 6.17 for the optimum condition of Ar-30W-6min, while 144 Baller and 6.13 for that of $NH_3$-30 W-8 min.

Synthesis and Photocatalytic Properties of Thermally Stable Metal-Oxide Hybrid Nanocatalyst with Ultrathin Oxide Encapsulation

  • Naik, Brundabana;Moon, Song Yi;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.317.2-317.2
    • /
    • 2013
  • Ultrathin oxide encapsulated metal-oxide hybrid nanocatalysts have been fabricated by a soft chemical and facile route. First, SiO2 nanoparticles of 25~30 nm size have been synthesized by modified Stobber's method followed by amine functionalization. Metal nanoparticles (Ru, Rh, Pt) capped with polymer/citrate have been deposited on functionalized SiO2 and finally an ultrathin layer of TiO2 coated on surface which prevents sintering and provides high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. TEM studies confirmed that 2.5 nm sized metal nanoparticles are well dispersed and distributed throughout the surface of 25 nm SiO2 nanoparticles with a 3-4 nm TiO2 ultrathin layer. The metal nanoparticles are still well exposed to outer surface, being enabled for surface characterization and catalytic activity. Even after calcination at $600^{\circ}C$, the structure and morphology of hybrid nanocatalysts remain intact confirm the high thermal stability. XPS spectra of hybrid nanocatalyst suggest the metallic states as well as their corresponding oxide states. The catalytic activity has been evaluated for high temperature CO oxidation reaction as well as photocatalytic H2 generation under solar simulation. The design of hybrid structure, high thermal stability, and better exposure of metal active sites are the key parameters for the high catalytic activity. The maximization of metal-TiO2 interface interaction has the great role in photocatalytic H2 production.

  • PDF