DOI QR코드

DOI QR Code

Gas Permeation Characteristics of PEBAX Mixed Matrix Membranes Containing Polyethylenimine-modified GO

Polyethylenimine으로 개질된 GO를 함유한 PEBAX 혼합막의 기체투과 특성

  • Yi, Eun Sun (Department of Chemical Engineering and Materials Science, Sangmyung University) ;
  • Hong, Se Ryeong (Kyedang College of General Educations, Sangmyung University)
  • 이은선 (상명대학교 화공신소재학과) ;
  • 홍세령 (상명대학교 계당교양교육원)
  • Received : 2021.11.15
  • Accepted : 2021.11.30
  • Published : 2021.12.31

Abstract

In this study, a mixed matrix membrane was prepared by varying the contents of GO and PEI-GO synthesized in PEBAX2533, and the permeation characteristics of N2 and CO2 were studied. The N2 and CO2 permeability of the PEBAX/GO mixed membrane decreased as the GO content increased, and showed the highest CO2/N2 selectivity of 58.9 at GO 0.3 wt%. For the PEBAX/PEI-GO mixed membrane, the N2 permeability decreased as the PEI-GO content increased, and the CO2 permeability showed a different trend according to the PEI-GO content. Overall, the CO2/N2 selectivity was higher than that of the PEBAX/GO mixed membrane. In particular, PEI-GO 0.3 wt% showed the highest CO2/N2 selectivity of 73.5 among the mixed membranes, and a positive result was obtained as it was located above the Robeson upper bound. This is believed to be due to the molecular sieving channel effect resulting from the original GO structure, the functional groups present in the structure of GO having affinity for CO2, and the effect of amine bound to PEI by modifying GO into PEI.

본 연구에서는 PEBAX2533에 합성된 GO와 PEI-GO의 함량을 달리 첨가하여 혼합막을 제조하고 N2와 CO2의 투과 특성을 연구하였다. PEBAX/GO 혼합막의 N2와 CO2 투과도는 전체적으로 GO 함량이 증가할수록 감소하였고, GO 0.3 wt%에서 가장 높은 CO2/N2 선택도 58.9를 보였다. 그리고 PEBAX/PEI-GO 혼합막에서 N2 투과도는 PEI-GO 함량이 증가함에 따라 감소하였고, CO2 투과도는 PEI-GO 함량에 따라 다른 경향을 보였으며 전체적으로 PEBAX/GO 혼합막보다 더 높은 CO2/N2 선택도를 보였다. 특히 PEI-GO 0.3 wt%는 혼합막들 중 가장 높은 CO2/N2 선택도인 73.5를 보이며 Robeson upper bound 위에 위치하는 긍정적인 결과를 얻었다. 이는 본연의 GO 구조에 의한 molecular sieving channel 효과와 CO2에 친화성이 있는 GO의 구조 내에 존재하는 작용기 그리고 GO를 PEI로 개질함으로써 PEI에 결합되어 있는 amine에 의한 효과가 함께 작용했기 때문으로 생각된다.

Keywords

References

  1. B. K. Seo, J. H. Kim, H. S. Ahn, B. J. Chang, and K. H. Lee, "The state of the art of membrane technology for separation of carbon dioxide from flue gas", KIC News, 14(3), 1 (2011).
  2. D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul, and B. D. Freeman, "Energy-efficient polymeric gas separation membranes for a sustainable future: A review", Polymer, 54, 18, 4729 (2013). https://doi.org/10.1016/j.polymer.2013.05.075
  3. J. Gao, H. Mao, H. Jin, C. Chen, A. Feldhoff and Y. Li, "Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation", Micropor. Mesopor. Mater., 297, 110030 (2020). https://doi.org/10.1016/j.micromeso.2020.110030
  4. Y. Wu, D. Zhao, S. Chen, J. Ren, K. Hua, H. Li and M. Deng, "The effect of structure change from polymeric membrane to gel membrane on CO2 separation performance", Sep. Purif. Technol., 261, 118243 (2021). https://doi.org/10.1016/j.seppur.2020.118243
  5. V. Nafisi and M. Hagg, "Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture", J. Membr. Sci., 459, 244 (2014). https://doi.org/10.1016/j.memsci.2014.02.002
  6. L. Dong, M. Chen, J. Li, D. Shi, W. Dong, X. Li and Y. Bai, "Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes", J. Membr. Sci., 520, 801 (2016). https://doi.org/10.1016/j.memsci.2016.08.043
  7. M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Perez and M. S. Rana, "Recent progress of fillers in mixed matrix membranes for CO2 separation: A review", Sep. Purif. Technol, 188, 431 (2017). https://doi.org/10.1016/j.seppur.2017.07.051
  8. G. T. Offord, S. R. Armstrong, B. D. Freeman, E. Baer, A. Hiltner and D. R. Paul, "Gas transport in coextruded multilayered membranes with alternating dense and porous polymeric layers", Polymer, 55, 5, 1259 (2014). https://doi.org/10.1016/j.polymer.2014.01.030
  9. J. Sanchez-Lainez, M. Ballester-Catalan, E. Javierre-Ortin, C. Tellez and J. Coronas, "Pebax® 1041 supported membranes with carbon nanotubes prepared via phase inversion for CO2/N2 separation", Dalton Trans., 49, 9, 2905 (2020). https://doi.org/10.1039/c9dt04424h
  10. R. Ebadi, H. Maghsoudi and A. A. Babaluo, "Fabrication and characterization of Pebax-1657 mixed matrix membrane loaded with Si-CHA zeolite for CO2 separation from CH4", J. Nat. Gas Sci. Eng., 90, 103947 (2021). https://doi.org/10.1016/j.jngse.2021.103947
  11. M. D. Pravin and A. Gnanamani, "Preparation, characterization and reusability efficacy of aminefunctionalized graphene oxide-polyphenol oxidase complex for removal of phenol from aqueous phase", RSC Adv., 8, 67, 38416 (2018). https://doi.org/10.1039/c8ra06364h
  12. J. P. Kim, E. Choi, J. Kang, S. E. Choi, Y. Choi, O. Kwon, and D. W. Kim, "Ultrafast H2-selective nanoporous multilayer graphene membrane prepared by confined thermal annealing", Chem. Commun., 57, 8730 (2021). https://doi.org/10.1039/D1CC02946K
  13. Y. Choi, S. S. Kim, J. H. Kim, J. Kang, E. Choi, S. E. Choi, J. P. Kim, O. Kwon, and D. W. Kim, "Graphene oxide nanoribbon hydrogel: Viscoelastic behavior and use as a molecular separation membrane", ACS Nano, 14, 12195 (2020). https://doi.org/10.1021/acsnano.0c05902
  14. X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo and H. Wu, "Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes", ACS Appl. Mater. Interfaces, 7, 9, 5528 (2015). https://doi.org/10.1021/acsami.5b00106
  15. F. Pazani and A. Aroujalian, "Enhanced CO2-selective behavior of Pebax-1657: A comparative study between the influence of graphene-based fillers", Polym. Test., 81, 106264 (2020). https://doi.org/10.1016/j.polymertesting.2019.106264
  16. T. Hou, L. Shu, K. Guo, X. Zhang, S. Zhou, M. He and J. Yao, "Cellulose membranes with polyethylenimine-modified graphene oxide and zinc ions for promoted gas separation", Cellulose, 27, 6, 3277 (2020). https://doi.org/10.1007/s10570-019-02962-4
  17. S. Meshkat, S. Kaliaguine and D. Rodrigue, "Mixed matrix membranes based on amine and non-amine MIL-53 (Al) in Pebax® MH-1657 for CO2 separation", Sep. Purif. Technol., 200, 177 (2018). https://doi.org/10.1016/j.seppur.2018.02.038
  18. A. Huang and B. Feng, "Facile synthesis of PEI-GO@ ZIF-8 hybrid material for CO2 capture", Int. J. Hydrogen Energy, 43, 4, 2224 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.070
  19. H. Tai, Y. Zhen, C. Liu, Z. Ye, G. Xie, X. Du and Y. Jiang, "Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film", Sens. Actuators B: Chem., 230, 501 (2016). https://doi.org/10.1016/j.snb.2016.01.105
  20. X. Xu, C. Song, J. M. Andresen, B. G. Miller and A. W. Scaroni, "Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture", Energy Fuels, 16, 6, 1463 (2002). https://doi.org/10.1021/ef020058u
  21. L. Keller, B. Ohs, J. Lenhart, L. Abduly, P. Blanke and M. Wessling, "High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture", Carbon, 126, 338 (2018). https://doi.org/10.1016/j.carbon.2017.10.023
  22. Q. Xin, H. Wu, Z. Jiang, Y. Li, S. Wang, Q. Li, X. Li, X. Lu, X. Cao and J. Yang, "SPEEK/aminefunctionalized TiO2 submicrospheres mixed matrix membranes for CO2 separation", J. Membr. Sci., 467, 23 (2014). https://doi.org/10.1016/j.memsci.2014.04.048
  23. G. J. Shin, K. Y. Rhee, and S. J. Park, "Improvement of CO2 capture by graphite oxide in presence of polyethylenimine", Int. J. Hydrogen Energy, 41, 32, 14351 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.162
  24. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, "Improved synthesis of graphene oxide", ACS nano, 4, 4806 (2010). https://doi.org/10.1021/nn1006368
  25. Y. He, Y. Xia, J. Zhao, Y. Song, L. Yi, and L. Zhao, "One-step fabrication of PEI-modified GO particles for CO2 capture", Appl. Phys. A, 125, 160 (2019). https://doi.org/10.1007/s00339-019-2435-x
  26. K. Zarshenas, A. Raisi, and A. Aroujalian, "Mixed matrix membranes of nano-zeolite NaX/poly(ether-block-amide) for gas separation applications", J. Membr. Sci., 510, 270 (2016). https://doi.org/10.1016/j.memsci.2016.02.059
  27. J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos, and G. N. Karanikolos, "CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions", Micropor. Mesopor. Mater., 267, 53 (2018). https://doi.org/10.1016/j.micromeso.2018.03.012
  28. E. A. Feijani, A. Tavassoli, H. Mahdavi, and H. Molavi, "Effective gas separation through graphene oxide containing mixed matrix membranes", J. Appl. Polym. Sci., 46271 (2018). https://doi.org/10.1002/app.46271
  29. D. Zhao, J. Ren, Y. Qiu, H. Li, K. Hua, X. Li, and M. Deng, "Effect of graphene oxide on the behavior or poly(amide-6-b-ethylene oxide)/graphene oxide mixed-matrix membrane in the permeation process", J. Appl. Polym. Sci., 132, 42624 (2015).
  30. R. Casadei, M. G. Baschetti, M. J. Yoo, H. B. Park, and L. Giorgini, "Pebax 2533/graphene oxide nanocomposite membranes for carbon capture", Membranes, 10, 188 (2020). https://doi.org/10.3390/membranes10080188
  31. A. Ehsani, M. Pakizeh, "Synthesis, characterization and gas permeation study of ZIF-11/Pebax2533 mixed matrix membrans", J. Taiwan Inst. Chem. Eng., 66, 414 (2016). https://doi.org/10.1016/j.jtice.2016.07.005
  32. J. Shen, "Size effects of graphene oxide on mixed matrix membranes for CO2 separation", AIChE J., 62, 2843 (2016). https://doi.org/10.1002/aic.15260
  33. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  34. D. Huang, Q. Xin, Y. Ni, Y. Shuai, S. Wang, Y. Li, H. Ye, L. Lin, X. Ding, and Y. Zhang, "Synergistic effects of zeolite imidazole framework@graphene oxide composite in humidified mixed matrix membranes on CO2 separation", RSC Adv., 8, 6099 (2018). https://doi.org/10.1039/C7RA09794H