• Title/Summary/Keyword: modified Mann algorithm

Search Result 6, Processing Time 0.014 seconds

MODIFIED MANN'S ALGORITHM BASED ON THE CQ METHOD FOR PSEUDO-CONTRACTIVE MAPPINGS

  • Yao, Yonghong;Zhou, Haiyun;Liou, Yeong-Cheng
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1499-1506
    • /
    • 2010
  • IIn this paper, we suggest and analyze a modified Mann's algorithm based on the CQ method for pseudo-contractive mappings in Hilbert spaces. Further, we prove a strong convergence theorem according to the proposed algorithm for pseudo-contractive mappings.

MODIFIED KRASNOSELSKI-MANN ITERATIONS FOR NONEXPANSIVE MAPPINGS IN HILBERT SPACES

  • Naidu, S.V.R.;Sangago, Mengistu-Goa
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.753-762
    • /
    • 2010
  • Let K be a nonempty closed convex subset of a real Hilbert space H. Let T : K $\rightarrow$ K be a nonexpansive mapping with a nonempty fixed point set Fix(T). Let f : K $\rightarrow$ K be a contraction mapping. Let {$\alpha_n$} and {$\beta_n$} be sequences in (0, 1) such that $\lim_{x{\rightarrow}0}{\alpha}_n=0$, (0.1) $\sum_{n=0}^{\infty}\;{\alpha}_n=+{\infty}$, (0.2) 0 < a ${\leq}\;{\beta}_n\;{\leq}$ b < 1 for all $n\;{\geq}\;0$. (0.3) Then it is proved that the modified Krasnoselski-Mann iterative sequence {$x_n$} given by {$x_0\;{\in}\;K$, $y_n\;=\;{\alpha}_{n}f(x_n)+(1-\alpha_n)x_n$, $n\;{\geq}\;0$, $x_{n+1}=(1-{\beta}_n)y_n+{\beta}_nTy_n$, $n\;{\geq}\;0$, (0.4) converges strongly to a point p $\in$ Fix(T} which satisfies the variational inequality

    $\leq$ 0, z $\in$ Fix(T). (0.5) This result improves and extends the corresponding results of Yao et al[Y.Yao, H. Zhou, Y. C. Liou, Strong convergence of a modified Krasnoselski-Mann iterative algorithm for non-expansive mappings, J Appl Math Com-put (2009)29:383-389.

HYBRID MONOTONE PROJECTION ALGORITHMS FOR ASYMPTOTICALLY QUASI-PSEUDOCONTRACTIVE MAPPINGS

  • Wu, Changqun;Cho, Sun-Young
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.415-423
    • /
    • 2009
  • In this paper, we consider the hybrid monotone projection algorithm for asymptotically quasi-pseudocontractive mappings. A strong convergence theorem is established in the framework of Hilbert spaces. Our results mainly improve the corresponding results announced by [H. Zhou, Demiclosedness principle with applications for asymptotically pseudo-contractions in Hilbert spaces, Nonlinear Anal. 70 (2009) 3140-3145] and also include Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 64 (2006) 1140-1152; Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Anal. 68 (2008) 2828-2836] as special cases.

A MODIFIED KRASNOSELSKII-TYPE SUBGRADIENT EXTRAGRADIENT ALGORITHM WITH INERTIAL EFFECTS FOR SOLVING VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEM

  • Araya Kheawborisut;Wongvisarut Khuangsatung
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.393-418
    • /
    • 2024
  • In this paper, we propose a new inertial subgradient extragradient algorithm with a new linesearch technique that combines the inertial subgradient extragradient algorithm and the KrasnoselskiiMann algorithm. Under some suitable conditions, we prove a weak convergence theorem of the proposed algorithm for finding a common element of the common solution set of a finitely many variational inequality problem and the fixed point set of a nonexpansive mapping in real Hilbert spaces. Moreover, using our main result, we derive some others involving systems of variational inequalities. Finally, we give some numerical examples to support our main result.

ACCELERATED HYBRID ALGORITHMS FOR NONEXPANSIVE MAPPINGS IN HILBERT SPACES

  • Baiya, Suparat;Ungchittrakool, Kasamsuk
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.553-568
    • /
    • 2022
  • In this paper, we introduce and study two different iterative hybrid projection algorithms for solving a fixed point problem of nonexpansive mappings. The first algorithm is generated by the combination of the inertial method and the hybrid projection method. On the other hand, the second algorithm is constructed by the convex combination of three updated vectors and the hybrid projection method. The strong convergence of the two proposed algorithms are proved under very mild assumptions on the scalar control. For illustrating the advantages of these two newly invented algorithms, we created some numerical results to compare various numerical performances of our algorithms with the algorithm proposed by Dong and Lu [11].