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HYBRID MONOTONE PROJECTION ALGORITHMS FOR
ASYMPTOTICALLY QUASI-PSEUDOCONTRACTIVE

MAPPINGS

Changqun Wu and Sun Young Cho

Abstract. In this paper, we consider the hybrid monotone projection al-

gorithm for asymptotically quasi-pseudocontractive mappings. A strong
convergence theorem is established in the framework of Hilbert spaces.

Our results mainly improve the corresponding results announced by [H.

Zhou, Demiclosedness principle with applications for asymptotically pseudo-
contractions in Hilbert spaces, Nonlinear Anal. 70 (2009) 3140-3145]

and also include Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence
of modified Mann iterations for asymptotically nonexpansive mappings

and semigroups, Nonlinear Anal. 64 (2006) 1140-1152; Convergence of

the modified Mann’s iteration method for asymptotically strict pseudo-
contractions, Nonlinear Anal. 68 (2008) 2828-2836] as special cases.

1. Introduction and Preliminaries

Throughout this paper, we assume that H is a real Hilbert space with inner
product 〈·, ·〉 and norm ‖ · ‖, respectively. Assume that C is a nonempty closed
convex subset of H and T : C → C is a nonlinear mapping. We use F (T ) to
denote the set of fixed points of T .

Recall that the mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C. (1.1)

The mapping T : C → C is said to be asymptotically nonexpansive if there
exists a sequence {kn} of positive real numbers with limn→∞ kn = 1 and such
that

‖Tnx− Tny‖ ≤ kn‖x− y‖ ∀n ≥ 1 and ∀x, y ∈ C. (1.2)
The class of asymptotically nonexpansive mappings was introduced by Goebel
and Kirk [1] in 1972. They proved that if C is a nonempty bounded closed
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convex subset of a uniformly convex Banach space E, then every asymptotically
nonexpansive self-mapping T of C has a fixed point. Further, the set F (T ) of
fixed points of T is closed and convex.

The mapping T : C → C is said to be pseudo-contractive if

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2, ∀x, y ∈ C. (1.3)

The mapping T : C → C is said to be asymptotically pseudo-contractive if
there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n → ∞ for which the
following inequality holds:

〈Tnx− Tny, x− y〉 ≤ kn‖x− y‖2, ∀x, y ∈ C. (1.4)

The class of asymptotically pseudo-contractive mappings which was introduced
by Schu [15] in 1991 contains properly the class of asymptotically nonexpansive
mappings as a subclass, which can be seen from the following example.

Example 1.1. For x ∈ [0, 1], define a mapping T : [0, 1]→ [0, 1] by

Tx = (1− x 2
3 )

3
2 .

Then T is asymptotically pseudocontractive but it is not asymptotically non-
expansive.

Recall that the mapping T is said to be asymptotically quasi-pseudocontractive
if F (T ) 6= ∅ and (1.4) holds for all x ∈ C but y ∈ F (T ).

We remark that every asymptotically pseudo-contractive mapping with a
nonempty fixed point set is asymptotically quasi-pseudocontractive, but the
converse may be not true, which can be seen from the following example, see
Zhou [18].

Example 1.2. Let H be a real line. We define a mapping T : H → H by

Tx =

{
π
2 sin 1

x , x 6= 0;
0, x = 0.

Then T is asymptotically quasi-pseudocontractive with the constant sequence
{1} but not asymptotically pseudocontractive.

Recall that the normal Mann’s iterative process was introduced by Mann [6]
in 1953. Since then, construction of fixed points for nonexpansive mappings
and pseudo-contractions via the normal Mann’s iterative process has been ex-
tensively investigated by many authors. The normal Mann’s iterative process
generates a sequence {xn} in the following manner:

∀x1 ∈ C, xn+1 = (1− αn)xn + αnTxn, ∀n ≥ 1, (1.5)

where the sequence {αn}∞n=0 is in the interval (0, 1).
If T is a nonexpansive mapping with a fixed point and the control sequence

{αn} is chosen so that
∑∞
n=0 αn(1− αn) =∞, then the sequence {xn} gener-

ated by normal Mann’s iterative process (1.5) converges weakly to a fixed point
of T (this is also valid in a uniformly convex Banach space with the Fréchet
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differentiable norm [14]). It is well known that (1.5) has only weak conver-
gence, in general (see [2] for an example). Attempts to modify the normal
Mann iteration method (1.5) by hybrid projection algorithms so that strong
convergence is guaranteed have recently been made; see, e.g., [3-5,7-13,16-18]
and the references therein.

Kim and Xu [4] adapted the normal Mann’s iterative process for asymptot-
ically nonexpansive mappings to have strong convergence theorem in Hilbert
spaces. More precisely, they gave the following result.

Theorem KX1. Let C be a nonempty bounded closed convex subset of a
Hilbert space H and let T : C → C be an asymptotically nonexpansive mapping
with a sequence {kn} such that kn → 1 as n→∞. Assume that {αn}∞n=0 is a
sequence in [0,1] such that lim supn→∞ αn < 1. Define a sequence {xn} in C
by the following algorithm:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)Tnxn,
Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},
Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},
xn+1 = PCn∩Qn

x0,

where
θn = (1− αn)(k2

n − 1)(diamC)2 → 0, as n→∞.
Then {xn} defined by above iterative algorithm converges strongly to PF (T )x0.

Recently, Kim and Xu [5] improved Theorem KX1 from asymptotically non-
expansive mappings to asymptotically strict pseudocontractions. To be more
precise, they proved the following theorem.

Theorem KX2. Let C be a closed convex subset of a Hilbert space H and let
T : C → C be an asymptotically k-strict pseudo-contraction for some 0 ≤ k <
1. Assume that the fixed point set F (T ) of T is nonempty and bounded. Let
{xn} be the sequence generated by the following (CQ) algorithm:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)Tnxn,
Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2

+[k − αn(1− αn)]‖xn − Tnxn‖2 + θn},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn

x0,

where

θn = ∆n(1− αn)γn → 0, ∆n = sup{‖xn − z‖ : z ∈ F (T )} <∞.
Assume that the control sequence {αn} is chosen so that lim supn→∞ αn < 1−k.
Then {xn} defined by above iterative algorithm converges strongly to PF (T )x0.
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Very recently, Zhou [18] improved the results of Kim and Xu [5] from asymp-
totically strict pseudo-contractions to asymptotically pseudo-contractive map-
pings. To be more precise, he proved the following theorem.

Theorem Z. Let C be a bounded and closed convex subset of a real Hilbert
space H. Let T : C → C be a uniformly L-Lipschitzian and asymptotically
pseudo-contraction with a fixed point. Assume the control sequence {αn} is
chosen so that αn ∈ [a, b] for some a, b ∈ (0, 1

1+L ). Let a sequence {xn} be
generated by the following manner:

x0 ∈ C chosen arbitrarily,

yn = (1− αn)xn + αnT
nxn, n ≥ 0,

Cn = {z ∈ C : αn[1− (1 + L)αn]‖xn − Tnxn‖2 ≤ 〈xn − z, yn − Tnyn〉
+(kn − 1)(diamC)2},

Qn = {z ∈ C : 〈z − xn, xn − x0〉 ≥ 0},
xn+1 = PCn∩Qn

x0, n ≥ 0.

Then the sequence {xn} generated by above sequence converges strongly to a
PF (T )x0.

In this paper, motivated by Theorem KX1, Theorem KX2, Theorem Z, we
modify the normal Mann’s iterative scheme to obtain strong convergence for
asymptotically quasi-pseudocontractive mappings in the framework of Hilbert
spaces without any compact assumption. The results presented in this paper
improved the corresponding results announced in Kim and Xu [4], Kim and Xu
[5], Qin, Su and Shang [10] and Zhou [18].

In order to prove our main results, we need the following lemmas.

Lemma 1.1 can be deduced from Zhou [18]. For the sake of completeness,
we still give the proof.

Lemma 1.1. Let C be a nonempty bounded and closed convex subset of H
and T a uniformly L-Lipschitzian and asymptotically quasi-pseudocontractive
mapping. Then F (T ) is a closed convex subset of C.

Proof. From the continuity of T , one has that F (T ) is closed. Next, we show
F (T ) is convex. Let p1, p2 ∈ F (T ). We prove p ∈ F (T ), where p = tp1 +
(1 − t)p2, for t ∈ (0, 1). Put yα = (1 − α)p + αTnp, where α ∈ (0, 1

1+L ). For
∀w ∈ F (T ), one sees

‖p− Tnp‖2

= 〈p− Tnp, p− Tnp〉 =
1
α
〈p− yα, p− Tnp〉

=
1
α
〈p− yα, p− Tnp− (yα − Tnyα)〉+

1
α
〈p− yα, yα − Tnyα〉

=
1
α
〈p− yα, p− Tnp− (yα − Tnyα)〉+

1
α
〈p− w + w − yα, yα − Tnyα〉
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≤ 1 + L

α
‖p− yα‖2 +

1
α
〈p− w, yα − Tnyα〉+

1
α
〈w − yα, yα − Tnyα〉

≤ (1 + L)α‖p− Tnp‖2 +
1
α
〈p− w, yα − Tnyα〉+

1
α

(kn − 1)‖yα − w‖2

≤ (1 + L)α‖p− Tnp‖2 +
1
α
〈p− w, yα − Tnyα〉+

1
α

(kn − 1)(diamC)2

which yields that

α[1−(1+L)α]‖p−Tnp‖2 ≤ 〈p−w, yα−Tnyα〉+(kn−1)(diamC)2, ∀w ∈ F (T ).
(1.4)

Taking w = pi i = 1, 2 in (1.4), multiplying t and (1 − t) on the both sides of
(1.4), respectively and adding up, one has

α[1− (1 + L)α]‖p− Tnp‖2 ≤ (kn − 1)(diamC)2.

Let n→∞ in (1.4) yields that limn→∞ ‖p− Tnp‖ = 0. Since T is continuous,
we have Tp = p. This shows that F (T ) is convex. This completes the proof. �

Lemma 1.2. Let C be a closed convex subset of real Hilbert space H and let
PC be the metric projection from H onto C(i.e., for x ∈ H, PCx is the only
point in C such that ‖x − PCx‖ = inf{‖x − z‖ : z ∈ C}). Given x ∈ H and
z ∈ C. Then z = PCx if and only if there holds the relations: 〈x−z, y−z〉 ≤ 0,
for any y ∈ C.

2. Main results

Theorem 2.1. Let C be a nonempty bounded and closed convex subset of
a Hilbert space H and T a uniformly L-Lipschitz and asymptotically quasi-
pseudocontractive mapping from C into itself with a nonempty fixed point set.
Let {xn} be a sequence generated in the following algorithm:

x0 ∈ C chosen arbitrarily,

yn = (1− αn)xn + αnT
nxn,

Cn = {z ∈ C : αn[1− (1 + L)αn]‖xn − Tnxn‖2 ≤ 〈xn − z, yn − Tnyn〉+ θn},
Q0 = C;
Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0};
xn+1 = PCn∩Qn

x0,

where
θn = (kn − 1)(diamC)2 → 0, as n→∞.

If the control sequence satisfies the restriction:

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn ≤ a < 1,

where a ∈ (0, 1
1+L ), then {xn} converges strongly to PF (T )x0.
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Proof. From the definition of Cn and Qn, one can easily see that Cn and Qn
are closed and convex for all n ≥ 0. Next, we prove that F (T ) ⊂ Cn ∩Qn for
all n ≥ 0. For ∀w ∈ F (T ), one has

‖xn − Tnxn‖2

= 〈xn − Tnxn, xn − Tnxn〉

=
1
αn
〈xn − yn, xn − Tnxn〉

=
1
αn
〈xn − yn, xn − Tnxn − (yn − Tnyn)〉+

1
αn
〈xn − yn, yn − Tnyn〉

=
1
αn
〈xn − yn, xn − Tnxn − (yn − Tnyn)〉+

1
αn
〈xn − w + w − yn, yn − Tnyn〉

≤ 1 + L

αn
‖xn − yn‖2 +

1
αn
〈xn − w, yn − Tnyn〉+

1
αn
〈w − yn, yn − Tnyn〉

≤ (1 + L)αn‖xn − Tnxn‖2 +
1
αn
〈xn − w, yn − Tnyn〉+

1
αn

θn.

It follows that

αn[1− (1 + L)αn]‖xn − Tnxn‖2 ≤ 〈xn − w, yn − Tyn〉+ θn,

which shows that w ∈ Cn. This implies that F (T ) ⊂ Cn for all n ≥ 0.
Next, we prove F (T ) ⊂ Qn for all n ≥ 0 by induction. For n = 0, we have
F (T ) ⊂ C = Q0. Assume that F (T ) ⊂ Qn. Since xn+1 is the projection of x0

onto Cn ∩Qn, we have

〈x0 − xn+1, xn+1 − w〉, ∀w ∈ Cn ∩Qn,

as F (T ) ⊂ Cn ∩Qn; the last inequality holds, in particular, for all w ∈ F (T ).
This together with the definition of Qn+1 implies that F (T ) ⊂ Qn+1. Hence
F (T ) ⊂ Cn ∩Qn holds for all n ≥ 0. Noticing that

xn+1 = PCn∩Qnx0 ∈ Qn
and xn = PQn

x0, one arrives at

‖x0 − xn‖ ≤ ‖x0 − xn+1‖,

which shows that the sequence {‖x0 − xn‖} is nondecreasing.
On the other hand, from xn = PQnx0, one has

〈x0 − xn, xn − w〉 ≥ 0, ∀w ∈ Qn. (2.1)

From Lemma 1.1, we have that PF (T )x0 is well defined. There exists a unique
p such that p = PF (T )x0. It follows from (2.1) that

0 ≤ 〈x0 − xn, xn − p〉
= 〈x0 − xn, xn − x0 + x0 − p〉
≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − p‖,
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which yields that
‖x0 − xn‖ ≤ ‖x0 − p‖. (2.2)

It follows from (2.2) that the sequence {xn} is bounded. Therefore, we have
that limn→∞ ‖x0 − xn‖ exists.

On the other hand, by the construction of Qn, one has that Qm ⊂ Qn and
xm = PQm

x0 ∈ Qn for any positive integer m ≥ n. From (2.1), we have

〈x0 − xn, xn − xm〉 ≥ 0. (2.3)

It follows that
‖xm − xn‖2 = ‖xm − x0 + x0 − xn‖2

= ‖xm − x0‖2 + ‖x0 − xn‖2 − 2〈x0 − xn, x0 − xm〉
≤ ‖xm − x0‖2 − ‖x0 − xn‖2 − 2〈x0 − xn, xn − xm〉
≤ ‖xm − x0‖2 − ‖x0 − xn‖2.

(2.4)

Letting m,n→∞ in (2.4), one has limm,n→∞ ‖xn− xm‖ = 0, ∀m ≥ n. Hence,
{xn} is a Cauchy sequence. Since H is a Hilbert space and C is closed and
convex, one can assume that

xn → q ∈ C as n→∞. (2.5)

Finally, we show that q = PF (T )x0. To end this, we first show q ∈ F (T ). By
taking m = n+ 1 in (2.4), one arrives at

lim
n→∞

‖xn − xn+1‖ = 0, (2.6)

Noticing that xn+1 = PCn∩Qn
x0 ∈ Cn, we obtain

αn[1− (1 + L)αn]‖xn − Tnxn‖2 ≤ ‖xn − xn+1‖‖yn − Tnyn‖+ θn.

It follows from the assumptions on the control sequence {αn} and (2.6) that

lim
n→∞

‖xn − Tnxn‖ = 0. (2.7)

Since T is a uniformly L-Lipschitz, one has

‖xn − Txn‖ = ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖+ ‖Tn+1xn+1 − Tn+1xn‖
+ ‖Tn+1xn − Txn‖
≤ (1 + L)‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖+ L‖Tnxn − xn‖.

It follows from (2.6) and (2.7) that

lim
n→∞

‖xn − Txn‖ = 0. (2.8)

Notice that
‖Txn − q‖ ≤ ‖xn − Txn‖+ ‖q − xn‖.

From (2.5) and (2.8), one obtains

lim
n→∞

‖Txn − q‖ = 0.
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From the closedness of T , one has q ∈ F (T ). By using the definition of Qn and
noting the fact that F (T ) ⊂ Qn, we have

〈x0 − xn, xn − w〉 ≥ 0, ∀w ∈ F (T ) ⊂ Qn. (2.9)

Letting n→∞ in (2.9), one gets

〈x0 − q, q − w〉 ≥ 0, ∀w ∈ F (T )

In view of Lemma 1.2, one sees that q = PF (T )x0. This completes the proof. �

Remark 2.2. Theorem 2.1 improves Theorem 3.5 of Zhou [18] from asymptot-
ically pseudo-contractive mappings to asymptotically quasi-pseudocontractive
mappings.

Remark 2.3. The hybrid monotone projection algorithm studied in this paper
is also different from Zhou [18]’s. We do not require that the mapping I −T is
demi-closed at zero.
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