• Title/Summary/Keyword: modes of vibration

Search Result 1,277, Processing Time 0.022 seconds

Extraction of the mode shapes of a segmented ship model with a hydroelastic response

  • Kim, Yooil;Ahn, In-Gyu;Park, Sung-Gun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.979-994
    • /
    • 2015
  • The mode shapes of a segmented hull model towed in a model basin were predicted using both the Proper Orthogonal Decomposition (POD) and cross random decrement technique. The proper orthogonal decomposition, which is also known as Karhunen-Loeve decomposition, is an emerging technology as a useful signal processing technique in structural dynamics. The technique is based on the fact that the eigenvectors of a spatial coherence matrix become the mode shapes of the system under free and randomly excited forced vibration conditions. Taking advantage of the simplicity of POD, efforts have been made to reveal the mode shapes of vibrating flexible hull under random wave excitation. First, the segmented hull model of a 400 K ore carrier with 3 flexible connections was towed in a model basin under different sea states and the time histories of the vertical bending moment at three different locations were measured. The measured response time histories were processed using the proper orthogonal decomposition, eventually to obtain both the first and second vertical vibration modes of the flexible hull. A comparison of the obtained mode shapes with those obtained using the cross random decrement technique showed excellent correspondence between the two results.

An Investigation into the Mode Superposition Method for the Foreced Transverse Vibration Analysis of Structures subject to the Timoshenko Beam Analogy (기준진동형중첩법(基準振動型重疊法)에 의한 Timoshenko보 유추(類推) 구조체(構造體)의 강제횡진동해석(强制橫振動解析))

  • K.C.,Kim;Y.I.,Park;H.M.,Kim;Y.J.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.1
    • /
    • pp.21-27
    • /
    • 1983
  • The mode superposition method(MSM) for the forced transverse vibration analysis of structures subject to Timoshenko beam analogy, which had originally been developed by Ormondroyd and McGoldrick, is reviewed to formulate it in more general form taking account of rotary inertia, dampings in separate terms of internal and external ones, and simultaneous action of exciting forces and moments. To investigate some general features of the method in practical utilizations, resonant maximum amplitudes of 4 high speed ships under concentrated sinusoidal excitation at the stern are calculated by both MSM and the finite difference method(FDM). For the FDM the hulls are discretized into 40 equal segments, and in utilization of MSM contributions of the first six modes are summed up to obtain responses up to the six-nodes resonant mode. The numerical results show that MSM gives slightly higher values, $4{\sim}10%$, than those by FDM. Since there is always uncertainty in the damping estimation of actual systems, influences of the damping magnitude on resonant amplitudes and a practical method to estimate modal damping coefficients are discussed.

  • PDF

On the Subharmonic Melnikov Analysis and Chaotic Behaviors in a 2-DOF Hamiltonian System (2자유도 Hamiltonian계의 Subharmonic Melnikov 해석과 혼돈양상에 대한 연구)

  • 박철희;이근수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.77-83
    • /
    • 1993
  • In this paper, the dynamics of a 2-DOF not 1:1 resonant Hamiltonian system are studied. In the first part of the work, the behaviors of special periodic orbits called normal modes are examined by means of the harmonic balance method and their approximate stability ar analyzed by using the Synge's concept named stability in the kinematico-statical sense. Secondly, the global dynamics of the system for low and high energy are studied in terms of a perturbation analysis and Poincare' maps. In this part, one can see that the unstable normal mode generates chaotic motions resulting from the transverse intersections of the stable and unstable manifolds. Although there exist analytic methods for proving the existence of infinitely many periodic orbits, chaos, they cannot be applied in our case and thus, the Poincare' maps constructed by direct numerical integrations are utilized fot detecting chaotic motions. In the last part of the work, the existence of arbitrarily many periodic orbits of the system are proved by using a subharmonic Melnikov's method. We also study the possibility of the breakdown of invariant KAM tori only when h>h$_{0}$ (h$_{0}$:bifurcating energy) and investigate the generality of the destruction phenomena of the rational tori in the systems perturbed by stiffness and inertial coupling.

  • PDF

Numerical Analysis of Deformation Mode of Flexible Plate-Type Piezoelectric Module for Evaluating Characteristics of Electrical-Energy Generation (판형 압전 진동자의 굽힘변형 모드에 따른 전압발생 특성에 관한 해석적 연구)

  • Park, Jeong-Hyun;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.735-741
    • /
    • 2015
  • Piezoelectric materials are well-utilized for transforming mechanical vibrations into electrical energy that can be stored and used to power a diversity of devices. In this work, these materials have been studied to improve the efficiency of a piezoelectric system, whereby the shape and vibration mode of a piezoelectric module was changed. The basic shape of the piezoelectric module used in this work comprises a width of 10 mm, a length of 30 mm, and a thickness of 0.2 mm. The structural design of the piezoelectric module is optimized using a Taguchi method to increase the corresponding electrical-energy generation. The maximum terminal voltage was defined as a characteristic value to evaluate the optimal design parameters. Through this work, we propose an optimal structure with an eccentric and centric mass; furthermore, the voltage increase of approximately 26% was obtained by comparing a general plate-vibrating piezosystem with an optimal plate-vibrating piezosystem.

A Study on the minimizing of cutting depth in sub-micro machining (초정밀 절삭에서의 가공깊이 최소화에 관한연구)

  • 손성민;허성우;안중환
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.376-381
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor affecting the qualities of machined parts. That is why diamond especially mono-crystal diamond, which has the sharpest edge among all other materials is widely used in micro-cutting. The question arises, given a diamond tool, what is the minimum (critical) depth of cut to get continuous chips while in the cutting process\ulcorner In this paper, the micro machinability around the critical depth of cut is investigated in micro grooving with a diamond tool, and introduce the minimizing method of cutting depth using vibration cutting. The experimental results show the characteristics of micro cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardeing around the critical depth of cut.

  • PDF

Rotordynamic Design and Analysis of the Rotor-Bearing System of a 500Wh Flywheel Energy Storage Device (플라이휠 에너지 저장장치 회전체계의 동역학적 설계 및 해석)

  • 최상규;김영철;경진호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.283-289
    • /
    • 1997
  • A 500Wh class high-speed Flywheel Energy Storage System (FESS) driven by a built-in BLDC motor/generator has been designed, which runs from 30000 to 60000rpm nominally. Due to the motor/generator inside, the flywheel rotor made of composites supported by PM/EM hybrid bearing system has a shape of bell or pendulum and thus requires accurate rotordynamic analyses and prediction of its dynamic behavior to secure the operating reliability. Rotordaynamic analyses of the flywheel rotor-bearing system revealed that the bell shaped rotor has two conical rigid-body modes in the system operating range and the first conical mode, of which nodal point lies in the radial EM bearing position, can adversely affect the dynamic response of the rotor at the corresponding critical speed. To eliminate the possibility of wild behavior of the rotor, two guide bearings are adopted at the upper end of the rotor and motor/generator. It was also revealed that the EM bearing stiffness of 0.5~1.0E+6 N/m and damping of 2000 Ns/m are favorable for smooth operation of the system around the 2nd critical speed.

  • PDF

Dynamic Analysis of the Tire by Sector Method (섹터해석법을 이용한 타이어의 동특성 해석)

  • 이인원;김동옥;김항우;정상우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2173-2180
    • /
    • 1995
  • This paper presents free vibration analysis method using the characteristics of the rotationally periodic structures and includes the analysis results of a tire as an example. The normal modes of the rotationally periodic structures are the kind of standing waves, so all sectors have the same deflection shapes, and only different phases. This property makes it possible to derive the analysis method called sector method. The sector method can give the accurate natural frequencies and the corresponding mode shapes of the rotationally periodic structure with information of only one sector. When the free vibration analysis is performed to find the dynamic characteristics of the rotationally periodic structure by using the sector method, the computer memory spaces and the CPU times can be saved. We obtained much economic benefits by using the sector method in the analysis of dynamic characteristics of a tire made of non-linear materials.

Investigation on Vibration Characteristics of Micro Speaker Diaphragms for Various Shape Designs (마이크로 스피커 진동판의 형상설계에 따른 진동특성 고찰)

  • Kim, Kyeong Min;Kim, Seong Keol;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.790-796
    • /
    • 2013
  • Micro-speaker diaphragms play an important role in generating a desired audio response. The diaphragm is generally a circular membrane, and the cross section is a double dome, with an inner dome and an outer dome. To improve the sound quality of the speaker, a number of corrugations may be included in the outer dome region. In this study, the role of these corrugations is investigated using two kinds of finite element method (FEM) calculations. Structural FEM modeling was carried out to investigate the change in stiffness of the diaphragm when the corrugations were included. Modal FEM modeling was then carried out to compare the natural frequencies and the resulting vibrational modes of the plain and corrugated diaphragms. The effects of the corrugations on the vibration characteristics of the diaphragm are discussed.

Vibration-mode-based story damage and global damage of reinforced concrete frames

  • Guo, Xiang;He, Zheng
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.589-598
    • /
    • 2018
  • An attempt is conducted to explore the relationship between the macroscopic global damage and the local damage of shear-type RC frames. A story damage index, which can be expressed as multi-variate functions of modal parameters, is deduced based on the tridiagonal matrix of the shear-type frame. The global damage model is also originated from structural modal parameters. Due to the connection of modal damage indexes, the relationship between the macroscopic global damage and the local story damage is reasonably established. In order to validate the derivation, a case study is carried out via an 8-story shear-type frame. The sensitivities of modal damage indexes to the location and severity of local story damages are studied. The evolution of the global damage is investigated as well. Results show that the global damage is sensitive to the degree of story damage, but it's not sensitive to its location. As the number of the damaged stories increases, more and more modes will be involved. Meanwhile, the global damage evolution curve changes from the concave shape to the S-type and then finally transforms into the convex shape. Through the proposed story damage, modal damage and global damage model, a multi-level damage assessment method is established.

A study on the coupled vibration of train wheel and rail (차륜과 철로의 연성진동에 관한 연구)

  • 김광식;김찬묵;윤희욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.385-396
    • /
    • 1989
  • In this paper, using by the orthogonalities of modes for trainwheel (as Mindlin's annular plate and rail (as Timoshenko beam), the frequency equation of the coupled system are induced. It is convinced that the natural frequencies of coupled system are distributed to be about quadratic order function examined through the experimental and numerical analysis. The natural frequencies of the system coupled by both creep force and creep moment are composed of the natural frequencies of the system coupled by creep force and the natural frequencies of the system coupled by creep moment . And it is shown that the coupled natural frequencies up to 3rd do not make much difference from the values of the system coupled by individual creep force of creep moment. But the coupled natural frequencies higher than the 3rd are quite different from those of individual case.