• 제목/요약/키워드: moderate earthquakes

검색결과 144건 처리시간 0.022초

사각형 철근콘크리트 교각의 심부구속철근비 제안 (Suggestion for Confinement Steel Ratio of Rectangular RC Bridge Piers)

  • 박창규;이대형;윤상철;김현준;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.89-92
    • /
    • 2005
  • Recently there have been occurred many loss of life and extensive damage to social infrastructures due to moderate and strong earthquakes all over the world. In this research, major design factors have been evaluated for the establishment of the rational seismic design code of rectangular RC bridge piers. It was concluded from this study that the axial force ratio and the longitudinal steel ratio should be the most important influencing design parameter for the seismic displacement ductility. However those parameters are not considered in the confinement steel ratio of the KHBDS. Thus, the objective of this study is to propose a rational design equation for transverse reinforcements of rectangular RC bridge piers. New confinement steel ratio is proposed by introducing the effect of the axial force and the longitudinal steel to the current KHBDS. It is thought that these new codes could release the rebar congestion problem in the plastic hinge region of RC bridge piers which contribute to the enhancement of constructibility and economization for RC bridge construction.

  • PDF

Effect of biaxial stress state on seismic fragility of concrete gravity dams

  • Sen, Ufuk;Okeil, Ayman M.
    • Earthquakes and Structures
    • /
    • 제18권3호
    • /
    • pp.285-296
    • /
    • 2020
  • Dams are important structures for management of water supply for irrigation or drinking, flood control, and electricity generation. In seismic regions, the structural safety of concrete gravity dams is important due to the high potential of life and economic loss if they fail. Therefore, the seismic analysis of existing dams in seismically active regions is crucial for predicting responses of dams to ground motions. In this paper, earthquake response of concrete gravity dams is investigated using the finite element (FE) method. The FE model accounts for dam-water-foundation rock interaction by considering compressible water, flexible foundation effects, and absorptive reservoir bottom materials. Several uncertainties regarding structural attributes of the dam and external actions are considered to obtain the fragility curves of the dam-water-foundation rock system. The structural uncertainties are sampled using the Latin Hypercube Sampling method. The Pine Flat Dam in the Central Valley of Fresno County, California, is selected to demonstrate the methodology for several limit states. The fragility curves for base sliding, and excessive deformation limit states are obtained by performing non-linear time history analyses. Tensile cracking including the complex state of stress that occurs in dams was also considered. Normal, Log-Normal and Weibull distribution types are considered as possible fits for fragility curves. It was found that the effect of the minimum principal stress on tensile strength is insignificant. It is also found that the probability of failure of tensile cracking is higher than that for base sliding of the dam. Furthermore, the loss of reservoir control is unlikely for a moderate earthquake.

Post-earthquake assessment of buildings using displacement and acceleration response

  • Hsu, Ting-Yu;Pham, Quang-Vinh
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.599-609
    • /
    • 2019
  • After an earthquake, a quick seismic assessment of a structure can facilitate the recovery of operations, and consequently, improve structural resilience. Especially for facilities that play a key role in rescue or refuge efforts (e.g., hospitals and power facilities), or even economically important facilities (e.g., high-tech factories and financial centers), immediately resuming operations after disruptions resulting from an earthquake is critical. Therefore, this study proposes a prompt post-earthquake seismic evaluation method that uses displacement and acceleration measurements taken from real structural responses that resulted during an earthquake. With a prepared pre-earthquake capacity curve of a structure, the residual seismic capacity can be estimated using the residual roof drift ratio and stiffness. The proposed method was verified using a 6-story steel frame structure on a shaking table. The structure was damaged during a moderate earthquake, after which it collapsed completely during a severe earthquake. According to the experimental results, a reasonable estimation of the residual seismic capacity of structures can be performed using the proposed post-earthquake seismic evaluation method.

지진관측자료의 효과적인 활용에 관한 고찰 (Best Use of the Measured Earthquake Data)

  • 연관희;박동희;김성주;최원학;장천중
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.36-43
    • /
    • 2001
  • In Korea, we are absolutely short of earthquake data in good quality from moderate and large earthquakes, which are needed fur the study of strong ground motion characteristics. This means that the best use of the available data is needed far the time being. In this respect, several methods are suggested in this paper, which can be applied in the process of data selection and analysis. First, it is shown that the calibration status of seismic stations can be easily checked by comparing the spectra from accelerometer and velocity sensor both of which are located at the same location. Secondly, it is recommended that S/N ratio in the frequency domain should be checked before discarding the data by only look of the data in time domain. Thirdly, the saturated earthquake data caused by ground motion level exceeding the detection limit of a seismograph are considered to see if such data can be used for spectrum analysis by performing numerical simulation. The result reveals that the saturated data can still be used within the dominant frequency range according to the levels of saturation. Finally, a technique to minimize the window effect that distorts the low frequency spectrum is suggested. This technique involves detrending in displacement domain once the displacement data are obtained by integration of low frequency components of the original data in time domain. Especially, the low frequency component can be separated by using discrete wavelet transform among many alternatives. All of these methods mentioned above may increase the available earthquake data and frequency range.

  • PDF

Experimental studies into a new type of hybrid outrigger system with metal dampers

  • Wang, A.J.
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.183-194
    • /
    • 2017
  • This paper presents the experimental investigation into a new type of steel-concrete hybrid outrigger system developed for the high-rise building structure. The steel truss is embedded into the reinforced concrete outrigger wall, and both the steel truss and concrete outrigger wall work compositely to enhance the overall structural performance of the tower structures under extreme loads. Meanwhile, metal dampers of low-yield steel material were also adopted as a 'fuse' device between the hybrid outrigger and the column. The damper is engineered to be 'scarified' and yielded first under moderate to severe earthquakes in order to protect the structural integrity of important structural components of the hybrid outrigger system. As such, not brittle failure is likely to happen due to the severe cracking in the concrete outrigger wall. A comprehensive experimental research program was conducted into the structural performance of this new type of hybrid outrigger system. Studies on both the key component and overall system tests were conducted, which reveal the detailed structural response under various levels of applied static and cyclic loads. It was demonstrated that both the steel bracing and concrete outrigger wall are able to work compositely with the low-yield steel damper and exhibits both good load carrying capacities and energy dispersing performance through the test program. It has the potential to be applied and enhance the overall structural performance of the high-rise structures over 300 m under extreme levels of loads.

Seismic response of foundation-mat structure subjected to local uplift

  • El Abbas, Nadia;Khamlichi, Abdellatif;Bezzazi, Mohammed
    • Coupled systems mechanics
    • /
    • 제5권4호
    • /
    • pp.285-304
    • /
    • 2016
  • The effects of large rotations and p-delta on the dynamic response of a structure subjected to seismic loading and local uplift of its foundation were analyzed in this work. The structure was modeled by an equivalent flexible mat mounted on a rigid foundation that is supported either by a Winkler soil type or a rigid soil. The equations of motion of the system were derived by taking into account the equilibrium of the coupled foundation-mat system where the structure was idealized as a single-degree-of-freedom. The obtained nonlinear coupled system of ordinary differential equations was integrated by using an adequate numerical scheme. A parametric study was performed then in order to evaluate the maximum response of the system as function of the intensity of the earthquake, the slenderness of the structure, the ratio of the mass of the foundation to the mass of the structure. Three cases were considered: (i) local uplift of foundation under large rotation with the p-delta effect, (ii) local uplift of foundation under large rotation without including the p-delta effect, (iii) local uplift of foundation under small rotation. It was found that, in the considered ranges of parameters and for moderate earthquakes, assuming small rotation of foundation under seismic loading can yield more adverse structural response, while the p-delta effect has almost no effect.

점지진원 모델을 이용한 경주 지진으로 인한 지반운동 생성 (Simulation of Ground Motions from Gyeongju Earthquake using Point Source Model)

  • 하성진;지현우;한상환
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.537-543
    • /
    • 2016
  • In low to moderate seismic regions, there are limited earthquake ground motion data recorded from past earthquakes. In this regard, the Gyeongju earthquake (M=5.8)occurred on September 12, 2016 produces valuable information on ground motions. Ground motions were recorded at various recording stations located widely in Korean peninsula. Without actual recoded ground motions, it is impossible to make a ground motion prediction model. In this study, a point source model is constructed to accurately simulate ground motions recorded at different stations located on different soil conditions during the Gyeongju earthquake. Using the model, ground motions are generated at all grid locations of Korean peninsula. Each grid size has $0.1^{\circ}(latitude){\times}0.1^{\circ}(longitude)$. Then a contour hazard map is constructed using the peak ground acceleration of the simulated ground motions.

Shake table tests on a non-seismically detailed RC frame structure

  • Sharma, Akanshu;Reddy, G.R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • 제41권1호
    • /
    • pp.1-24
    • /
    • 2012
  • A reinforced concrete (RC) framed structure detailed according to non-seismic detailing provisions as per Indian Standard was tested on shake table under dynamic loads. The structure had 3 main storeys and an additional storey to simulate the footing to plinth level. In plan the structure was symmetric with 2 bays in each direction. In order to optimize the information obtained from the tests, tests were planned in three different stages. In the first stage, tests were done with masonry infill panels in one direction to obtain information on the stiffness increase due to addition of infill panels. In second stage, the infills were removed and tests were conducted on the structure without and with tuned liquid dampers (TLD) on the roof of the structure to investigate the effect of TLD on seismic response of the structure. In the third stage, tests were conducted on bare frame structure under biaxial time histories with gradually increasing peak ground acceleration (PGA) till failure. The simulated earthquakes represented low, moderate and severe seismic ground motions. The effects of masonry infill panels on dynamic characteristics of the structure, effectiveness of TLD in reducing the seismic response of structure and the failure patterns of non-seismically detailed structures, are clearly brought out. Details of design and similitude are also discussed.

Earthquake resistance of structural walls confined by conventional tie hoops and steel fiber reinforced concrete

  • Eom, Taesung;Kang, Sumin;Kim, Okkyue
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.843-859
    • /
    • 2014
  • In the present study, the seismic performance of structural walls with boundary elements confined by conventional tie hoops and steel fiber concrete (SFC) was investigated. Cyclic lateral loading tests on four wall specimens under constant axial load were performed. The primary test parameters considered were the spacing of boundary element transverse reinforcement and the use of steel fiber concrete. Test results showed that the wall specimen with boundary elements complying with ACI 318-11 21.9.6 failed at a high drift ratio of 4.5% due to concrete crushing and re-bar buckling. For the specimens where SFC was selectively used in the plastic hinge region, the spalling and crushing of concrete were substantially alleviated. However, sliding shear failure occurred at the interface of SFC and plain concrete at a moderate drift ratio of 3.0% as tensile plastic strains of longitudinal bars were accumulated during cyclic loading. The behaviors of wall specimens were examined through nonlinear section analysis adopting the stress-strain relationships of confined concrete and SFC.

Evaluation of seismic reliability and multi level response reduction factor (R factor) for eccentric braced frames with vertical links

  • Mohsenian, Vahid;Mortezaei, Alireza
    • Earthquakes and Structures
    • /
    • 제14권6호
    • /
    • pp.537-549
    • /
    • 2018
  • Using vertical links in eccentric braced frames is one of the best passive structural control approaches due to its effectiveness and practicality advantages. However, in spite of the subject importance there are limited studies which evaluate the seismic reliability and response reduction factor (R-factor) in this system. Therefore, the present study has been conducted to improve the current understanding about failure mechanism in the structural systems equipped with vertical links. For this purpose, following definition of demand and capacity response reduction factors, these parameters are computed for three different buildings (4, 8 and 12 stories) equipped with this system. In this regards, pushover and incremental dynamic analysis have been employed, and seismic reliability as well as multi-level response reduction factor according to the seismic demand and capacity of the frames have been derived. Based on the results, this system demonstrates high ductility and seismic energy dissipation capacity, and using the response reduction factor as high as 8 also provides acceptable reliability for the frame in the moderate and high earthquake intensities. This system can be used in original buildings as lateral load resisting system in addition to seismic rehabilitation of the existing buildings.