• Title/Summary/Keyword: model.

Search Result 159,822, Processing Time 0.167 seconds

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

Development of Practical Problem-Based Home Economics Teaching.Learning Process Plans by Blended Learning Strategy - Focusing on a Unit 'the Youth and Consumer Life' - (Blended Learning(BL) 전략을 활용한 실천적 문제 중심 가정과 교수 학습 과정안 개발 - '청소년과 소비생활' 단원을 중심으로 -)

  • Lee, Jin-Hee;Chae, Jung-Hyun
    • Journal of Korean Home Economics Education Association
    • /
    • v.20 no.4
    • /
    • pp.19-42
    • /
    • 2008
  • The purpose of this study was to develop practical problem-based home economics teaching.learning process plans about a unit 'the youth and consumer life' of middle school eighth-grade Technology and Home Economics by applying blended learning(BL) strategy. According to ADDIE instructional design model, this study was conducted in the following procedure: analysis, design/development, implementation, and evaluation. In the stage of design and development, the selected unit was converted into a practical problem-based unit, and practical problem-based teaching. learning process plans were designed in detail by using BL strategy. An online study room for practical problem-based home economics instruction grounded in BL strategy was prepared by using Edunet(http://community.edunet4u.net/${\sim}$consumer2). Eight-session lesson plans were mapped out, and study aids for students and materials for teachers were prepared. In the implementation stage, the first-session teaching plans that dealt with a minor question 'what preparations should be made to become a wise consumer' were utilized when instruction was provided to 115 eighth graders who were in three different province, and the other one was in a middle school in the city of Daejeon. The experimental teaching was implemented for two weeks in the following procedure: preliminary program, pre-online learning, main instruction and post- online learning. The preliminary program was carried out in a session in the classroom, and pre-online learning was provided before the main instruction was given in a session in the classroom. After the main instruction was completed, post-online learning was offered. In the evaluation stage, a survey was conducted on all the learners and teachers to find out their opinions and suggestions.

  • PDF

Performance of Korean State-owned Enterprises Following Executive Turnover and Executive Resignation During the Term of Office (공기업의 임원교체와 중도퇴임이 경영성과에 미치는 영향)

  • Yu, Seungwon;Kim, Suhee
    • KDI Journal of Economic Policy
    • /
    • v.34 no.3
    • /
    • pp.95-131
    • /
    • 2012
  • This study examines whether the executive turnover and the executive resignation during the term of office affect the performance of Korean state-owned enterprises. The executive turnover in the paper means the comprehensive change of the executives which includes the change after the term of office, the change after consecutive terms and the change during the term of office. The 'resignation' was named for the executive change during the term of office to distinguish from the executive turnover. The study scope of the paper is restrained to the comprehensive executive change itself irrespective of the term of office and the resignation during the term of office. Therefore the natural change of the executive after the term of office or the change after consecutive terms is not included in the study. Spontaneous resignation and forced resignation are not distinguished in the paper as the distinction between the two is not easy. The paper uses both the margin of return on asset and the margin of return on asset adjusted by industry as proxies of the performance of state-owned enterprises. The business nature of state-owned enterprise is considered in the study, the public nature not in it. The paper uses the five year (2004 to 2008) samples of 24 firms designated as public enterprises by Korean government. The analysis results are as follows. First, 45.1% of CEOs were changed a year during the sample period on the average. The average tenure period of CEOs was 2 years and 3 months and 49.9% among the changed CEOs resigned during the term of office. 41.6% of internal auditors were changed a year on the average. The average tenure period of internal auditors was 2 years and 2 months and 51.0% among the changed internal auditors resigned during the term of office. In case of outside directors, on average, 38.2% were changed a year. The average tenure period was 2 years and 7 months and 25.4% among the changed internal directors resigned during the term of office. These statistics show that numerous CEOs resigned before the finish of the three year term in office. Also, considering the tenure of an internal auditor and an outside director which diminished from 3 years to 2 years by an Act on the Management of Public Institutions (applied to the executives appointed since April 2007), it seems most internal auditors resigned during the term of office but most outside directors resigned after the end of the term. Secondly, There was no evidence that the executives were changed during the term of office because of the bad performance of prior year. On the other hand, contrary to the normal expectation, the performance of prior year of the state-owned enterprise where an outside director resigned during the term of office was significantly higher than that of other state-owned enterprises. It means that the clauses in related laws on the executive dismissal on grounds of bad performance did not work normally. Instead it can be said that the executive change was made by non-economic reasons such as a political motivation. Thirdly, the results from a fixed effect model show there were evidences that performance turned negatively when CEOs or outside directors resigned during the term of office. CEO's resignation during the term of office gave a significantly negative effect on the margin of return on asset. Outside director's resignation during the term of office lowered significantly the margin of return on asset adjusted by industry. These results suggest that the executive's change in Korean state-owned enterprises was not made by objective or economic standards such as management performance assessment and the negative effect on performance of the enterprises was had by the unfaithful obeyance of the legal executive term.

  • PDF

Prediction of Salvaged Myocardium in Patients with Acute Myocardial Infarction after Primary Percutaneous Coronary Angioplasty using early Thallium-201 Redistribution Myocardial Perfusion Imaging (급성심근경색증의 일차적 관동맥성형술 후 조기 Tl-201 재분포영상을 이용한 구조심근 예측)

  • Choi, Joon-Young;Yang, You-Jung;Choi, Seung-Jin;Yeo, Jeong-Seok;Park, Seong-Wook;Song, Jae-Kwan;Moon, Dae-Hyuk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.4
    • /
    • pp.219-228
    • /
    • 2003
  • Purpose: The amount of salvaged myocardium is an important prognostic factor in patients with acute myocardial infarction (MI). We investigated if early Tl-201 SPECT imaging could be used to predict the salvaged myocardium and functional recovery in acute MI after primary PTCA. Materials and Methods: In 36 patients with first acute MI treated with primary PTCA, serial echocardiography and Tl-201 SPECT imaging ($5.8{\pm}2.1$ days after PTDA) were performed. Regional wall motion and perfusion were quantified with on 16-segment myocardial model with 5-point and 4-point scaling system, respectively. Results: Wall motion was improved in 78 of the 212 dyssynergic segments on 1 month follow-up echocardiography and 97 on 7 months follow-up echocardiography, which were proved to be salvaged myocardium. The areas under receiver operating characteristic curves of Tl-201 perfusion score for detecting salvaged myocardial segments were 0.79 for 1 month follow-up and 0.83 for 7 months follow-up. The sensitivity and specificity of Tl-201 redistribution images with optimum cutoff of 40% of peak thallium activity for detecting salvaged myocardium were 84.6% and 55.2% for 1 month follow-up, and 87.6% and 64.3% for 7 months follow-up, respectively. There was a linear relationship between the percentage of peak thallium activity on early redistribution imaging and the likelihood of segmental functional improvement 7 months after reperfusion. Conclusion: Tl-201 myocardial perfusion SPECT imaging performed early within 10 days after reperfusion can be used to predict the salvaged myocardium and functional recovery with high sensitivity during the 7 months following primary PTCA in patients with acute MI.

The Framework of Research Network and Performance Evaluation on Personal Information Security: Social Network Analysis Perspective (개인정보보호 분야의 연구자 네트워크와 성과 평가 프레임워크: 소셜 네트워크 분석을 중심으로)

  • Kim, Minsu;Choi, Jaewon;Kim, Hyun Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.177-193
    • /
    • 2014
  • Over the past decade, there has been a rapid diffusion of electronic commerce and a rising number of interconnected networks, resulting in an escalation of security threats and privacy concerns. Electronic commerce has a built-in trade-off between the necessity of providing at least some personal information to consummate an online transaction, and the risk of negative consequences from providing such information. More recently, the frequent disclosure of private information has raised concerns about privacy and its impacts. This has motivated researchers in various fields to explore information privacy issues to address these concerns. Accordingly, the necessity for information privacy policies and technologies for collecting and storing data, and information privacy research in various fields such as medicine, computer science, business, and statistics has increased. The occurrence of various information security accidents have made finding experts in the information security field an important issue. Objective measures for finding such experts are required, as it is currently rather subjective. Based on social network analysis, this paper focused on a framework to evaluate the process of finding experts in the information security field. We collected data from the National Discovery for Science Leaders (NDSL) database, initially collecting about 2000 papers covering the period between 2005 and 2013. Outliers and the data of irrelevant papers were dropped, leaving 784 papers to test the suggested hypotheses. The co-authorship network data for co-author relationship, publisher, affiliation, and so on were analyzed using social network measures including centrality and structural hole. The results of our model estimation are as follows. With the exception of Hypothesis 3, which deals with the relationship between eigenvector centrality and performance, all of our hypotheses were supported. In line with our hypothesis, degree centrality (H1) was supported with its positive influence on the researchers' publishing performance (p<0.001). This finding indicates that as the degree of cooperation increased, the more the publishing performance of researchers increased. In addition, closeness centrality (H2) was also positively associated with researchers' publishing performance (p<0.001), suggesting that, as the efficiency of information acquisition increased, the more the researchers' publishing performance increased. This paper identified the difference in publishing performance among researchers. The analysis can be used to identify core experts and evaluate their performance in the information privacy research field. The co-authorship network for information privacy can aid in understanding the deep relationships among researchers. In addition, extracting characteristics of publishers and affiliations, this paper suggested an understanding of the social network measures and their potential for finding experts in the information privacy field. Social concerns about securing the objectivity of experts have increased, because experts in the information privacy field frequently participate in political consultation, and business education support and evaluation. In terms of practical implications, this research suggests an objective framework for experts in the information privacy field, and is useful for people who are in charge of managing research human resources. This study has some limitations, providing opportunities and suggestions for future research. Presenting the difference in information diffusion according to media and proximity presents difficulties for the generalization of the theory due to the small sample size. Therefore, further studies could consider an increased sample size and media diversity, the difference in information diffusion according to the media type, and information proximity could be explored in more detail. Moreover, previous network research has commonly observed a causal relationship between the independent and dependent variable (Kadushin, 2012). In this study, degree centrality as an independent variable might have causal relationship with performance as a dependent variable. However, in the case of network analysis research, network indices could be computed after the network relationship is created. An annual analysis could help mitigate this limitation.

Analysis of the Time-dependent Relation between TV Ratings and the Content of Microblogs (TV 시청률과 마이크로블로그 내용어와의 시간대별 관계 분석)

  • Choeh, Joon Yeon;Baek, Haedeuk;Choi, Jinho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.163-176
    • /
    • 2014
  • Social media is becoming the platform for users to communicate their activities, status, emotions, and experiences to other people. In recent years, microblogs, such as Twitter, have gained in popularity because of its ease of use, speed, and reach. Compared to a conventional web blog, a microblog lowers users' efforts and investment for content generation by recommending shorter posts. There has been a lot research into capturing the social phenomena and analyzing the chatter of microblogs. However, measuring television ratings has been given little attention so far. Currently, the most common method to measure TV ratings uses an electronic metering device installed in a small number of sampled households. Microblogs allow users to post short messages, share daily updates, and conveniently keep in touch. In a similar way, microblog users are interacting with each other while watching television or movies, or visiting a new place. In order to measure TV ratings, some features are significant during certain hours of the day, or days of the week, whereas these same features are meaningless during other time periods. Thus, the importance of features can change during the day, and a model capturing the time sensitive relevance is required to estimate TV ratings. Therefore, modeling time-related characteristics of features should be a key when measuring the TV ratings through microblogs. We show that capturing time-dependency of features in measuring TV ratings is vitally necessary for improving their accuracy. To explore the relationship between the content of microblogs and TV ratings, we collected Twitter data using the Get Search component of the Twitter REST API from January 2013 to October 2013. There are about 300 thousand posts in our data set for the experiment. After excluding data such as adverting or promoted tweets, we selected 149 thousand tweets for analysis. The number of tweets reaches its maximum level on the broadcasting day and increases rapidly around the broadcasting time. This result is stems from the characteristics of the public channel, which broadcasts the program at the predetermined time. From our analysis, we find that count-based features such as the number of tweets or retweets have a low correlation with TV ratings. This result implies that a simple tweet rate does not reflect the satisfaction or response to the TV programs. Content-based features extracted from the content of tweets have a relatively high correlation with TV ratings. Further, some emoticons or newly coined words that are not tagged in the morpheme extraction process have a strong relationship with TV ratings. We find that there is a time-dependency in the correlation of features between the before and after broadcasting time. Since the TV program is broadcast at the predetermined time regularly, users post tweets expressing their expectation for the program or disappointment over not being able to watch the program. The highly correlated features before the broadcast are different from the features after broadcasting. This result explains that the relevance of words with TV programs can change according to the time of the tweets. Among the 336 words that fulfill the minimum requirements for candidate features, 145 words have the highest correlation before the broadcasting time, whereas 68 words reach the highest correlation after broadcasting. Interestingly, some words that express the impossibility of watching the program show a high relevance, despite containing a negative meaning. Understanding the time-dependency of features can be helpful in improving the accuracy of TV ratings measurement. This research contributes a basis to estimate the response to or satisfaction with the broadcasted programs using the time dependency of words in Twitter chatter. More research is needed to refine the methodology for predicting or measuring TV ratings.

Product Community Analysis Using Opinion Mining and Network Analysis: Movie Performance Prediction Case (오피니언 마이닝과 네트워크 분석을 활용한 상품 커뮤니티 분석: 영화 흥행성과 예측 사례)

  • Jin, Yu;Kim, Jungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.49-65
    • /
    • 2014
  • Word of Mouth (WOM) is a behavior used by consumers to transfer or communicate their product or service experience to other consumers. Due to the popularity of social media such as Facebook, Twitter, blogs, and online communities, electronic WOM (e-WOM) has become important to the success of products or services. As a result, most enterprises pay close attention to e-WOM for their products or services. This is especially important for movies, as these are experiential products. This paper aims to identify the network factors of an online movie community that impact box office revenue using social network analysis. In addition to traditional WOM factors (volume and valence of WOM), network centrality measures of the online community are included as influential factors in box office revenue. Based on previous research results, we develop five hypotheses on the relationships between potential influential factors (WOM volume, WOM valence, degree centrality, betweenness centrality, closeness centrality) and box office revenue. The first hypothesis is that the accumulated volume of WOM in online product communities is positively related to the total revenue of movies. The second hypothesis is that the accumulated valence of WOM in online product communities is positively related to the total revenue of movies. The third hypothesis is that the average of degree centralities of reviewers in online product communities is positively related to the total revenue of movies. The fourth hypothesis is that the average of betweenness centralities of reviewers in online product communities is positively related to the total revenue of movies. The fifth hypothesis is that the average of betweenness centralities of reviewers in online product communities is positively related to the total revenue of movies. To verify our research model, we collect movie review data from the Internet Movie Database (IMDb), which is a representative online movie community, and movie revenue data from the Box-Office-Mojo website. The movies in this analysis include weekly top-10 movies from September 1, 2012, to September 1, 2013, with in total. We collect movie metadata such as screening periods and user ratings; and community data in IMDb including reviewer identification, review content, review times, responder identification, reply content, reply times, and reply relationships. For the same period, the revenue data from Box-Office-Mojo is collected on a weekly basis. Movie community networks are constructed based on reply relationships between reviewers. Using a social network analysis tool, NodeXL, we calculate the averages of three centralities including degree, betweenness, and closeness centrality for each movie. Correlation analysis of focal variables and the dependent variable (final revenue) shows that three centrality measures are highly correlated, prompting us to perform multiple regressions separately with each centrality measure. Consistent with previous research results, our regression analysis results show that the volume and valence of WOM are positively related to the final box office revenue of movies. Moreover, the averages of betweenness centralities from initial community networks impact the final movie revenues. However, both of the averages of degree centralities and closeness centralities do not influence final movie performance. Based on the regression results, three hypotheses, 1, 2, and 4, are accepted, and two hypotheses, 3 and 5, are rejected. This study tries to link the network structure of e-WOM on online product communities with the product's performance. Based on the analysis of a real online movie community, the results show that online community network structures can work as a predictor of movie performance. The results show that the betweenness centralities of the reviewer community are critical for the prediction of movie performance. However, degree centralities and closeness centralities do not influence movie performance. As future research topics, similar analyses are required for other product categories such as electronic goods and online content to generalize the study results.

Bone mineral density and nutritional state according to milk consumption in Korean postmenopausal women who drink coffee: Using the 2008~2009 Korea National Health and Nutrition Examination Survey (한국 폐경 후 여성 커피소비자에서 우유섭취여부에 따른 골밀도와 영양상태 비교 : 2008~2009년 국민건강영양조사 자료 이용)

  • Ryu, Sun-Hyoung;Suh, Yoon Suk
    • Journal of Nutrition and Health
    • /
    • v.49 no.5
    • /
    • pp.347-357
    • /
    • 2016
  • Purpose: This study investigated bone mineral density and nutritional state according to consumption of milk in Korean postmenopausal women who drink coffee. Methods: Using the 2008~2009 Korean National Health & Nutrition Examination Survey data, a total of 1,373 postmenopausal females aged 50 yrs and over were analyzed after excluding those with diseases related to bone health. According to coffee and/or milk consumption, subjects were divided into four groups: coffee only, both coffee & milk, milk only, and none of the above. All data were processed after application of weighted values and adjustment of age, body mass index, physical activity, drinking, and smoking using a general linear model. For analysis of nutrient intake and bone density, data were additionally adjusted by total energy and calcium intake. Results: The coffee & milk group had more subjects younger than 65 yrs and higher education, urban residents, and higher income than any other group. The coffee only group showed somewhat similar characteristics as the none of the above group, which showed the highest percentage of subjects older than 65 and in a lower education and socio-economic state. Body weight, height, body mass index, and lean mass were the highest in coffee & milk group and lowest in the none of the above group. On the other hand, the milk only group showed the lowest values for body mass index and waist circumference, whereas percent body fat did not show any difference among the groups. The coffee and milk group showed the highest bone mineral density in the total femur and lumbar spine as well as the highest nutritional state and most food group intakes, followed by the milk only group, coffee only group, and none of the above group. In the assessment of osteoporosis based on T-score of bone mineral density, although not significant, the coffee and milk group and milk only group, which showed a better nutritional state, included more subjects with a normal bone density, whereas the none of the above group included more subjects with osteoporosis than any other group. Conclusion: Bone mineral density in postmenopausal women might not be affected by coffee drinking if their diets are accompanied by balanced food and nutrient intake including milk.

Chinese relationship between animation and best pole - Focused on the aesthetic principles of the Cultural Revolution period (중국 애니메이션과 모범극의 상관관계 연구 - 문화대혁명 시기의 미학 원칙을 중심으로)

  • Kong, De Wei
    • Cartoon and Animation Studies
    • /
    • s.39
    • /
    • pp.215-231
    • /
    • 2015
  • The Cultural Revolution in the history of Chinese animation hinder the development of the initial animation, and after a negative assessment instrument provided the cause is to become sluggish growth of the Chinese animation. So this time animation are things that are the subject of academic research studies or analysis has been depreciating almost uniformly without evaluation. However, of all the cultural and artistic creation it is developing in its own specific historical conditions and has the aesthetic results. This paper puts the primary purpose is to hold in consideration the aesthetic principles that led to cultural and artistic creativity and objective perspective the achievements the Chinese animation of the time period of the Cultural Revolution. Cultural Revolution is avoided to the previous period in accordance with the socialist ideology of Mao Ze-dong(毛澤東) sikindaneun highlight the culture of the proletariat and placed our goal to create a new class culture. Therefore, cultural and artistic creation of this period is often inconsistent with this part of our aesthetic principles generally accepted character has a non- elitist and anti properties. Best drama is a creative one hand as a model to implement the principles of aesthetics, art and culture Cultural Revolution period kkophimyeo reference for understanding the aesthetic principles that animated the Chinese Cultural Revolution period of orientation. This paper has San Tu Chu(三突出), Hong Guang Liang(紅光亮), and Gao Da Quan(高大全) at the time of the Cultural Revolution aesthetic principles are reflected in how the concrete work, the Cultural Revolution when the animation is how to accommodate these aesthetic principles and placed emphasis on comparative studies on best pole and correlation of the Cultural Revolution when the Chinese animation to ensure that adaptation in own way. First, after analyzing whether the aesthetic principles of focusing on the similarities of the best pole time of the Cultural Revolution and China, and how to implement animation in the works, these aesthetic principles according to the analysis of positive and negative influence on the creation of Chinese animation It was described as neutral. The detailed analysis and comparative study courses were trying to access in two significant aspects of the characters and scenes directing. In terms of character animation of the Cultural Revolution in China when a young boy or girl, emphasis should emphasize the health tinged with red lips and cheek blush to highlight the desired Gong Nong Bing(工農兵) shape as the main character and smooth texture and sophisticated highlights the glittering feeling to the touch, it was confirmed focused hayeoteum to implement the principle of 'Hong Guang Liang', highlighting the brilliant colors with a clean, bright colors. Highlighting a number of protagoniste compared to the antagonist in the animated scene of the Cultural Revolution a few times in terms of production and, among a number of protagoniste also emphasizes the outstanding hero figure, "yet three outstanding heroes heroic figures also emphasize the leading figures among the the director of the extrusion step-by-step approach "('San Tu Chu')was used. In addition, the hero figure is generally high and low angle by directing a large and perfect aesthetic appearance was to faithfully implement the principle of 'high-charged'('Gao Da Quan').