• Title/Summary/Keyword: model building

Search Result 6,079, Processing Time 0.04 seconds

Pounding between adjacent buildings of varying height coupled through soil

  • Naserkhaki, Sadegh;El-Rich, Marwan;Aziz, Farah N.A. Abdul;Pourmohammad, Hassan
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.573-593
    • /
    • 2014
  • Pounding between adjacent buildings is a significant challenge in metropolitan areas because buildings of different heights collide during earthquake excitations due to varying dynamic properties and narrow separation gaps. The seismic responses of adjacent buildings of varying height, coupled through soil subjected to earthquake-induced pounding, are evaluated in this paper. The lumped mass model is used to simulate the buildings and soil, while the linear visco-elastic contact force model is used to simulate pounding forces. The results indicate while the taller building is almost unaffected when the shorter building is very short, it suffers more from pounding with increasing height of the shorter building. The shorter building suffers more from the pounding with decreasing height and when its height differs substantially from that of the taller building. The minimum required separation gap to prevent pounding is increased with increasing height of the shorter building until the buildings become almost in-phase. Considering the soil effect; pounding forces are reduced, displacements and story shears are increased after pounding, and also, minimum separation gap required to prevent pounding is increased.

Control of Asymmetrical Tall Buildings under Wind Loading (비대칭 고층건물의 내풍 및 제진 해석)

  • 민경원;김진구;조한욱
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.203-211
    • /
    • 1997
  • In the design of tall building system, the wind loading can be more dominant factor than earthquake loading, and thus, it is important to check the stability and human comfort against wind. Experimental wind tunnel test is usually performed to predict wind behavior of a tall building, however, the test is not cost-effective in the preliminary stage for various structural models of tall building systems. In this regard, the study is focused on the numerical wind analysis of the tall building with and without tuned mass dampers based on the three dimensional model of wind loads and building behavior. As a numerical result, an asymmetrical 102-story tall building is presented to show the results of root mean squares of build responses with and without tuned mass dampers.

  • PDF

Model Building Strategy for Healthy Schools (건강한 학교 만들기 모형 개발)

  • Chang, Chang-Gok
    • Journal of the Korean Society of School Health
    • /
    • v.14 no.1
    • /
    • pp.39-46
    • /
    • 2001
  • The aim of this study is to develop a strategy for building healthy schools. For this, the concept of a healthy school was defined and the need for healthy schools was identified and reviewed. This included comparative studies of foreign countries as well. This study found that the elements of a healthy school were physical, psychological, environmental, nutritional, educational, serviceable, and practical. The strategy of building this model was to connect students and teachers, school and administration, and parents and community within one circle on the basis of these elements.

  • PDF

A General Decision-Theoretic Model for a Couple's Family Building Process

  • Abel, Volker
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.7 no.1
    • /
    • pp.51-57
    • /
    • 1982
  • During the course of history, more and more reliable birth control methods have become available. Hence, to a certain degree, the possibility of avoiding any or additional children, and of spacing the family building process has arisen. The advancement of six predetermination technology, whereby couples can influence the sex of their children, gives couples, another decision variable. Assuming a rational acting couple, we present a general decision-theoretic model which describes the family building process and its optimization through maximizing the expected utility concerning the spacing, ordering, sex, and number of their children.

  • PDF

Seismic Response Analysis of a Isolated Lumped-Mass Beam Model (면진된 집중질량 보 모델의 지진응답해석)

  • 이재한;구경회
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.561-568
    • /
    • 2001
  • For obtaining the time history nodal responses of reactor building, a lumped-mass beam model composed of two sticks for the reactor building and the reactor support structure is developed. The time history responses for the non-isolated and isolated reactor buildings are calculated under an artificial time history, generated using the seismic spectrum curve of US NRC RG1.60. The analysis results show that the horizontal accelerations of the isolated building are dramatically decreased to one-tenths of the non-isolated one, but the vertical responses are increased by about 40%.

  • PDF

Wind Tunnel Investigation of Fluctuating Pressure inside Building (풍하중에 의한 건물내부 압력의 동적변화에 관한 연구)

  • Kyoung-Hoon Rhee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.63-68
    • /
    • 1990
  • The nature of fluctuating air pressure inside building was studied by testing a building model in a wind tunnel. The model has a single room and a sin81e window opening. Various opening conditions were tested in both laminar uniform wind and turbulent boundary-layer wind. The RMS and the spectra of the fluctuating internal pressure were measured. The test results support a recent theory which predicts the behavior of internal pressure under high wind based on aerodynamic analysis.

  • PDF

Experimental Study on Vibration Control of Bracing Dampers using Rubbers (방진원 고무를 이용한 가새형 감쇠기의 진동제어 실험연구)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.249-257
    • /
    • 1998
  • Vibration-resistant rubbers, whose elastic and shear behaviors are similar to viscoelastic materials, are used to make bracing dampers to reduce the building vibration. Experimental study is carried out to find the vibration characteristics of the dampers installed in the building model. The natural frequencies and modal damping ratios are obtained from the free vibration test and Fourier analysis. Shaking table test is performed to find the response behavior of the building model under earthquake loading. The present experimental study shows that the bracing dampers have the behavior of viscoelastic dampers, which increase the modal damping ratios and viscoelastic characteristics.

  • PDF

Experimental System of Active control for Building Structures (구조물의 능동제어 실험을 위한 시스템 구성)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.274-285
    • /
    • 1998
  • Increasing flexibility and lightness of recently built high-rise buildings make the structures susceptible to loads such as earthquakes and winds. Therefore, higher performance vibration control systems to reduce the vibration levels are demanded more than any time in the past. One of typical active vibration control systems is the active mass damper(AMD). In this paper, an active vibration control system consisting of small shaking table, building model, sensors, signal processing board and AMD is constructed. The dynamic characteristics of these individual systems are investigated through the experimental study. The performance of the active vibration control system is verified through harmonic resonant load excitation on building model.

  • PDF

Effect of internal angles between limbs of cross plan shaped tall building under wind load

  • Kumar, Debasish;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.95-118
    • /
    • 2017
  • The present study revealed comparison the pressure distribution on the surfaces of regular cross plan shaped building with angular cross plan shaped building which is being transformed from basic cross plan shaped building through the variation of internal angles between limbs by $15^{\circ}$ for various wind incidence angle from $0^{\circ}$ to $180^{\circ}$ at an interval of $30^{\circ}$. In order to maintain the area same the limbs sizes are slightly increased accordingly. Numerical analysis has been carried out to generate similar nature of flow condition as per IS: 875 (Part -III):1987 (a mean wind velocity of 10 m/s) by using computational fluid dynamics (CFD) with help of ANSYS CFX ($k-{\varepsilon}$ model). The variation of mean pressure coefficients, pressure distribution over the surface, flow pattern and force coefficient are evaluated for each cases and represented graphically to understand extent of nonconformities due to such angular modifications in plan. Finally regular cross shaped building results are compared with wind tunnel results obtained from similar '+' shaped building study with similar flow condition. Reduction in along wind force coefficients for angular crossed shaped building, observed for various skew angles leads to develop lesser along wind force on building compared to regular crossed shaped building and square plan shaped building. Interference effect within the internal faces are observed in particular faces of building for both cases, considerably. Significant deviation is noticed in wind induced responses for angular cross building compared to regular cross shaped building for different direction wind flow.

Analysis on the Effects of Building Coverage Ratio and Floor Space Index on Urban Climate (도시의 건폐율 및 용적률이 도시기후에 미치는 영향 분석)

  • Yeo, In-Ae;Yee, Jurng-Jae;Yoon, Seong-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.19-27
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed by 3-Dimensional Urban Canopy Model. The characteristics of urban climate were analyzed combining artificial land coverage, building size, heat production from the air conditioning and topographic conditions as physical variables which affects urban climate characteristics. The results are as follows. (1) The aspects of the urban climatal change is derived to be related to the combination of the building coverage ratio, building height and shading area. According to the building height, the highest temperature was increased by $2.1^{\circ}C$ from 2-story to 5-story building and the absolute humidity by 2.1g/kg maximum and the wind velocity by 1.0m/s was decreased from 2-story to 20-story building. (2) Whole heat generation was influenced by the convective sensible heat at the lower building height and by the artificial heat generation at the higher one over 20-story building influence to some extent of the building coverage ratio. The effect of the altitude is not more considerable than the other variables as below $1^{\circ}C$ of the air temperature. In the last, deriving the combination of building coverage and building height is needed to obtain effectiveness of the urban built environment planning at the point of the urban climate. These simulation results need to be constructed as DB which shows urban quantitative thermal characters by the urban physical structure. These can be quantitative base for suggesting combinations of the building and urban planning features at the point of the desirable urban thermal environment as well as analyzing urban climate phenomenon.