• Title/Summary/Keyword: model based simulation

Search Result 8,809, Processing Time 0.036 seconds

Study on the Model based Control considering Rotary Tillage of Autonomous Driving Agricultural Robot (자율주행 밭농업로봇의 로터리 경작을 고려한 모델 기반 제어 연구)

  • Song, Hajun;Yang, Kyon-Mo;Oh, Jang-Seok;Song, Su-Hwan;Han, Jong-Boo;Seo, Kap-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.233-239
    • /
    • 2020
  • The aims of this paper is to develop a modular agricultural robot and its autonomous driving algorithm that can be used in field farming. Actually, it is difficult to develop a controller for autonomous agricultural robot that transforming their dynamic characteristics by installation of machine modules. So we develop for the model based control algorithm of rotary machine connected to agricultural robot. Autonomous control algorithm of agricultural robot consists of the path control, velocity control, orientation control. To verify the developed algorithm, we used to analytical techniques that have the advantage of reducing development time and risks. The model is formulated based on the multibody dynamics methods for high accuracy. Their model parameters get from the design parameter and real constructed data. Then we developed the co-simulation that is combined between the multibody dynamics model and control model using the ADAMS and Matlab simulink programs. Using the developed model, we carried out various dynamics simulation in the several rotation speed of blades.

Development of a New Numerical Analysis Method for Nodal Probabilistic Production Cost Simulation (각 부하지점별 확률론적 발전비용 산정을 위한 수치해석적 방법의 개발)

  • Kim, Hong-Sik;Mun, Seung-Pil;Choe, Jae-Seok;No, Dae-Seok;Cha, Jun-Min
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.9
    • /
    • pp.431-439
    • /
    • 2001
  • This Paper illustrates a new numerical analysis method using a nodal effective load model for nodal probabilistic production cost simulation of the load point in a composite power system. The new effective load model includes capacities and uncertainties of generators as well as transmission lines. The CMELDC(composite power system effective load duration curve) based on the new effective load model at HLll(Hierarchical Level H) has been developed also. The CMELDC can be obtained from convolution integral processing of the outage capacity probabilistic distribution function of the fictitious generator and the original load duration curve given at the load point. It is expected that the new model for the CMELDC proposed in this study will provide some solutions to many problems based on nodal and decentralized operation and control of an electric power systems under competition environment in future. The CMELDC based on the new model at HLll will extend the application areas of nodal probabilistic production cost simulation, outage cost assessment and reliability evaluation etc. at load points. The characteristics and effectiveness of this new model are illustrated by a case study of MRBTS(Modified Roy Billinton Test System).

  • PDF

A Study on the System Identification based on Neural Network for Modeling of 5.1. Engines (S.I. 엔진 모델링을 위한 신경회로망 기반의 시스템 식별에 관한 연구)

  • 윤마루;박승범;선우명호;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.29-34
    • /
    • 2002
  • This study presents the process of the continuous-time system identification for unknown nonlinear systems. The Radial Basis Function(RBF) error filtering identification model is introduced at first. This identification scheme includes RBF network to approximate unknown function of nonlinear system which is structured by affine form. The neural network is trained by the adaptive law based on Lyapunov synthesis method. The identification scheme is applied to engine and the performance of RBF error filtering Identification model is verified by the simulation with a three-state engine model. The simulation results have revealed that the values of the estimated function show favorable agreement with the real values of the engine model. The introduced identification scheme can be effectively applied to model-based nonlinear control.

Development of FAA AC120-63 Level C Flight Simulation Model for KA-32T (FAA AC120-63 Level C급 KA-32T 비행 시뮬레이션 모델 개발)

  • Jeon, Dae-Keun;Jun, Hyang-Sig;Choi, Hyoung-Sik;Choi, Young-Kiu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.406-412
    • /
    • 2009
  • Flight simulation model for helicopter simulator is one of the most important models which affect flight performance and handling quality. It is typical to develop the model based on the raw data and models from the helicopter designers/manufacturers. The approaches in this study were to develop the basic model based on the available resources regarding helicopter operation/maintenance and to tune and validate it based on the flight test results. The basic model was developed with maintenance manuals, flight manuals, analyses, measurements, papers and so on considering that KA-32T data could not be obtained from the manufacturer. The flight test for KA-32T was performed and the reference data for the simulation validation tests were acquired. The flight simulation model was validated to have the fidelity compatible with level C of FAA AC120-63 after comparison and tuning with flight test results.

Development of a Simulation Model for Supply Chain Management of Modular Construction based Steel Bridge (모듈러 공법 기반 강교 공급사슬 관리를 위한 시뮬레이션 모형 개발)

  • Lee, Jaeil;Jeong, Eunji;Kim, Sinam;Jeong, Keunchae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.2
    • /
    • pp.3-15
    • /
    • 2022
  • In this study, we develop a simulation model for Supply Chain Management (SCM) of modular construction based steel bridge. To this end, first, Factory Production/Site Construction system data for the steel bridge construction were collected, and supply chain, entities, resources, processes were defined based on the collected data. After that, a steel bridge supply chain simulation model was developed by creating data, flowchart, and animation modules using Arena software. Finally, verification and validation of the model were performed by using animation check, extreme condition check, average value test, Little' s law test, and actual case value test. As a result, the developed simulation model appropriately expressed the processes and characteristics of the steel bridge supply chain without any logical errors, and provided accurate performance evaluation values for the target system. In the future, we expect that the model will faithfully play a role as a performance evaluation platform in developing management techniques for optimally operating the steel bridge supply chain.

Efficient Co-simulation Method with Dynamic Selection of Processor Mode1 (동적인 프로세서 모델 선택에 의한 효율적인 코시뮬레이션 방법)

  • 고현우;배종열;정정화
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.396-399
    • /
    • 1999
  • In this paper, the efficient HW/SW co-simulation method which selects the ISA model dynamically is proposed. Because the ISA models with only fixed accuracy have been used in previous co-simulation environment, it may result in bad performance in speed or accuracy. In the proposed method, the cycle accurate ISA model is used in the case that the states of the detailed system are to be inspected. In other case, instruction-based model is executed in order to accelerate the simulation speed. The proposed dynamic model selection can be done by setting the conversion point in the application code before the simulation starts. The experiment on the embedded RISC processor have been performed, and its result shows that the proposed method is more efficient than the case of using fixed ISA model.

  • PDF

Cooling Simulation for Fixed-Bed of Rough Rice (벼 퇴적층 냉각 시뮬레이션)

  • 김동철;김의웅;금동혁
    • Journal of Biosystems Engineering
    • /
    • v.24 no.1
    • /
    • pp.31-40
    • /
    • 1999
  • The objective of this study were to develop a cooling simulation model for fixed-bed of rough rice and to analyze the factors affecting cooling time of rough rice. A computer simulation model based on equilibrium conditions between grain and air was developed to predict temperature and moisture content changes during cooling of rough rice. the result of t-test showed that there were no significant differences between predicted and measured temperature changes on significance model agreed well with measured values. This cooling simulation model was applied to analyze the effect of some factors, such as air flow rate, cooling air temperature and humidity, initial grain temperature and moisture content, and bed depth, on cooling time of rough rice. Cooling rate increased with increase of air flow rate and bed depth whereas it decreased with increase of cooling air temperature and humidity and initial grain temperature. Among these factors, the most important factor was air flow rate. Specific air flow rate of 0.35㎥/min㎥ was required for cooling rough rice in 24 hours.

  • PDF

A Simulation Model for the Determination of Optimal Workers (최적작업자수의 결정을 위한 Simulation모형)

  • 연경화
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.8 no.11
    • /
    • pp.69-77
    • /
    • 1985
  • The queue theory is based on the assumption that most system are normally assigned to stay under steady state. Therefore, the initial problem can be represented by a symbolic model but such a representation does not permit analysis of all the interesting alternatives. When the solution to the problem is thus restricted to a particular subclass of available alternatives, the symbolic model can be solved by mathematics to deduce which alternative is optimal. However, when be consider slightly more complicated alternatives, the analytic procedures become interactable. The purpose of this study is to show how a simulation model enable us to handle the more complicated system after examining the characteristics of the complications that negate more complicated system. Then construct a simulation model and compare the solution of simulation models with analytic methods.

  • PDF

A new approach for the saccadic eye movement system simulation (Saccade 안구운동계의 시뮬레이션)

  • 박상희;남문현
    • 전기의세계
    • /
    • v.26 no.1
    • /
    • pp.87-90
    • /
    • 1977
  • Various simulation techniques were developed in the modeling of biological system during the last decades. Mostly analog and hybrid simulation techniques have been used. The authors chose the Digital Analog Simulation (DAS) technique by using the MIMIC language to simulate the saccadic eye movement system performances on the digital computer. There have been various models presented by many investigators after Young & Stark's sampled-data model. The eye movement model chosen by the authors is Robinson's model III which shows the parallel information processing characteristics clearly to the double-step input stimuli. In the process of simulation, the parameter and constants used were based on the neurophysiological data of the human and animals. The analog model blocks were converted to the corresponding MIMIC block diagrams and programmed into the MIMIC statements. The program was run on the CDC Cyber 72-14 computer. The essential input stimulus was double-step of 5 and 10 degrees, and target durations chosen were 50,100 and 150 msec. The results obtained by the DAS technqiue were in good agreement with analog simulation carried out by other investigators as well as with the experimental human saccadic eye movement responses to double-step target movements.

  • PDF