• Title/Summary/Keyword: mode-shape sensitivity

Search Result 70, Processing Time 0.025 seconds

A Study on the Structure for the Improvement of Vibration Characteristics of a Vehicle Seatbelt (자동차 시트벨트의 진동특성 개선을 위한 구조에 관한 연구)

  • Kim, Chang-Hee;Oh, Chea-Eun;Kim, Tea-Woo;Song, Chul-Woo;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.97-102
    • /
    • 2020
  • To prevent vibration of a vehicle's interior parts due to external impacts, the vehicle should be designed to reduce vibration and increase rigidity. In this paper, we conducted a vehicle test in which the vibration characteristics of a seatbelt resulting from the impact of a person closing a car door were measured and analyzed. A correlation analysis was performed using the finite analysis method. Based on this, a sensitivity analysis was performed, and an improved model was designed. We compared the natural frequencies and mode shapes of the improved and the initial models, which confirmed that the natural frequency of the improved model was more than 10 Hz higher than that of the initial model. Moreover, the response frequency of the improved model was three times higher than the input frequency applied in the vehicle test.

A Study for The Comparison of Structural Damage Detection Method Using Structural Dynamic Characteristic Parameters (구조 동특성 파라미터를 이용한 구조물 손상 탐색기법 비교 연구)

  • Choi, Byoung-Min;Woo, Ho-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.257-263
    • /
    • 2007
  • Detection of structural damage is an inverse problem in structural engineering. There are three main questions in the damage detection: existence, location and extent of the damage. In concept, the natural frequency and mode shapes of any structure must satisfy an eigenvalue problem. But, if a potential damage exists in a structure, an error resulting from the substitution of the refined analytical finite element model and measured modal data into the structural eigenvalue equation will occur, which is called the residual modal forces, and can be used as an indicator of potential damage in a structure. In this study, a useful damage detection method is proposed and compared with other two methods. Two degree-of-freedom system and Cantilever beam are used to demonstrate the approach. And the results of three introduced method are compared.

Determination of Steel-concrete Interface Parameters: Me chanical Properties of Interface Parameters (강-콘크리트 계면의 계면상수 결정 : 계면상수의 역학적 성질)

  • Lee, Ta;Joo, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.781-788
    • /
    • 2009
  • Mechanical properties of steel-concrete interface were evaluated on the basis of experimental observations. The properties included bond strength, unbounded and bonded friction angles, residual level of friction angle, mode I fracture energy, mode II bonded fracture energy and unbonded slip-friction energy under different levels of normal stress, and shape parameters to define geometrical shape of failure envelope. For this purpose, a typical type of constitutive model of describing steel-concrete interface behavior was presented based on a hyperbolic three-parameter Mohr-Coulomb type failure criterion. The constitutive model depicts the strong dependency of interface behavior on bonding condition of interface, bonded or unbounded. Values of the interface parameters were determined through interpretation of experimental results, geometry of failure envelope and sensitivity analysis. Nonlinear finite element analysis that incorporates steel-concrete interface as well as material nonlinearities of concrete and steel were performed to predict the experimental results.

A study on calibration frequency limit of acoustic chamber type microphone calibrator and improvement method using mode shape (음향 챔버형 마이크로폰 검교정기의 검교정 주파수 한계와 모드 특성을 이용한 개선 방법에 관한 연구)

  • Kim, Chayeong;Shin, Kumjae;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • This paper identifies the cause of the high frequency calibration limit of the acoustic chamber type calibrator for microphone calibration and presents a method to improve it. By using a commercial finite element analysis software, we analyzed the calibration frequency limit of the acoustic chamber type calibrator through eigen-frequency and frequency domain analysis. Based on this, we designed and fabricated an acoustic chamber type calibrator that can precisely calibrate within 1 dB from about 2 Hz to 6.4 kHz and verified its performance through experiments. The acoustic chamber type calibrator fabricated through this study has the advantage of being able to calibrate multiple microphones simultaneously in a wide frequency range, so it can be usefully used for simple calibration for multiple microphones.

Improved Sensitivity Method for Natural Frequency and Mode Shape of Damped Systems (감쇠 시스템의 고유진동수와 모드의 개선된 만감도 기법)

  • 조홍기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.176-183
    • /
    • 2000
  • A simplified for the eigenpair sensitivities of damped systems is presented. This approach employs a reduced equation to determine the sensitivities of eigenpairs of the damped vibratory systems with distinct eigenvalues. The derivatives of eigenpairs are obtained by solving an algebraic equation with a symmetric coefficient matrix of (n+1) b (n+1) dimension where n is the number of degree of freedom. This is an improved method of the previous work of Lee and Jung. Two equations are used to find eigenvalues derivatives and eigenvector derivatives in their paper. A significant advantage of this approach over Lee and Jung is that one algebraic equation newly developed is enough to compute such eigenvalue derivatives and eigenvector derivatives. Simulation results indicate that the new method is highly efficient in determining the sensitivities of engenpairs of the damped vibratory systems with distrinct eigenvalues.

  • PDF

Integrated Test and Evaluation for Improvement of Vehicle Road Noise (승용차의 도로면 발생 소음 개선을 위한 시험 및 평가 연구)

  • 고강호;허승진;국형석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.327-333
    • /
    • 2003
  • Several tests are performed to evaluate road booming noise. Baseline test delivers the information of road noise characteristics. Coupling effect between structure and acoustics is obtained from the mode shapes and the natural frequencies by the modal test. Equivalent stiffness at joint areas between chassis and car-body system can be determined by the input point inertance test. Noise sensitivity of body mounting point of a chassis part can be obtained from the noise transfer function test with input point inertance test. Operational deflection shape makes us analyze the actual vibration modes of the chassis system under actual leading and find noise sources very easily. Finally, the transfer path analysis is used to Identify noise Paths through the chassis system. The objectives and the procedures of the tests are described in this Paper Also, the guideline for efficient road noise evaluation test can be found.

Transient Response Characteristics of Vehicle Seatbelt (자동차 시트벨트의 과도응답 특성에 관한 연구)

  • Kim, Chang-Hee;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.71-77
    • /
    • 2020
  • In recent years, as a consequence of the technological advancements in the automobile industry and changes in consumer demands, the reduction of noise inside vehicles rather than vehicle performance has increasingly become an important factor of interest. To date, most studies have focused on noise and vibration reduction techniques for the engine and drive system of vehicles. In this research, a comparative analysis for reducing the effect of vehicle seatbelts on the transient response is performed using the test of vehicle conditions and transient response analysis in accordance with seatbelt conditions. After the sensitivity analysis, the specifications for improvement were designed based on the transient response analysis. It was confirmed that the transient response characteristics were improved by the transient response analysis and vehicle conditions test. Through computer-aided engineering, the transient response characteristics of seatbelts were checked with less cost and time.

A Study for Structural Damage Identification Method Using Genetic Algorithm (유전자 알고리즘을 이용한 구조물 손상 탐색기법에 관한 연구)

  • Woo, Ho-Kil;Choi, Byoung-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.80-87
    • /
    • 2007
  • In this paper, a method for identifying the location and extent of a damage in a structure using residual forces was presented. Element stiffness matrix reduction parameters in a finite element model were used to describe the damaged structure mathematically. The element stiffness matrix reduction parameters were determined by minimizing a global error derived from dynamic residual vectors, which were obtained by introducing a simulated experimental data into the eigenvalue problem. Genetic algorithm was used to get the solution set of element stiffness reduction parameters. The proposed scheme was verified using Euler-Bernoulli beam. The results were presented in the form of tables and charts.

The Study on the Vibration Characteristics of Vehicle Compact Disk Player (차량탑재용 컴팩트 디스크 플레이어의 진동 특성에 관한 연구)

  • Lee Tae-Keun;Kim Byoung-Sam
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.117-124
    • /
    • 2005
  • This study developes the vibration model to estimate the vibration energy of compact disc player's mainbase assembly which is supported by dampers and springs, and this model is verified by experiment. From frequency response function, we investigate the natural frequency and mode shape in the up/down direction for mainbase assembly. In order to determine the analysis frequency band, we investigate the excitation frequency of road from the vehicle test. As the characteristics of dampers and springs are changed, we carry out the sensitivity analysis of vibration energy for mainbase assembly which include optical pick-up and feeding system. And we found out that the properties of damper were dominant element in the vibration energy of mainbase assembly's CG(center of gravity).

System Identification for Structural Vibration of Layered Stone Pagoda System (적층식 석탑의 진동 시스템 인식)

  • Kim, Byeong Hwa
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.237-244
    • /
    • 2017
  • This study proposes a numerical model to explain the closely placed double modes in the vibration of a layered stone pagoda system. The friction surface between the stones is modelled as the Timoshenko finite element while each stone layer is modelled as a rigid body. It is assumed that the irregular asperity on the friction surface enables the stone to be excited. This results in the closely placed modes that are composed of natural modes and self-excited modes. To examine the validity of the proposed model, a set of modal testing and analysis for a layered stone pagoda mock-up model has been conducted and a set of closely placed double modes are extracted. Applying the extended sensitivity-based system identification technique, the various system parameters are identified so that the modal parameters of the proposed numerical model are the same with those of the experimental mock-up. For a horizontal impulse excitation, the simulated acceleration responses are compared with measurements.