• Title/Summary/Keyword: mode-locked laser

Search Result 127, Processing Time 0.02 seconds

Broadband Wavelength-swept Raman Laser for Fourier-domain Mode Locked Swept-source OCT

  • Lee, Hyung-Seok;Jung, Eun-Joo;Jeong, Myung-Yung;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.316-320
    • /
    • 2009
  • A novel broadband wavelength-swept Raman laser was used to implement Fourier-domain mode locked (FDML) swept-source optical coherence tomography (SS-OCT). Instead of a conventional semiconductor optical amplifier, this study used broadband optical fiber Raman amplification, over 50 nm centered around 1545 nm, using a multi-wavelength optical pumping scheme, which was implemented with the four laser diodes at the center wavelengths of 1425, 1435, 1455 and 1465 nm, respectively, and the maximum operating power of 150 mW each. The operating swept frequency of the laser was determined to 16.7 kHz from the FDML condition of 12 km optical fiber in the ring cavity. The OCT images were obtained using the novel broadband wavelengthswept Raman laser source.

Laser Diode Pumped Mode-Locked $1.3{\mu}m$ Nd-YAG Laser (모드록킹된 다이오드 여기 $1.3{\mu}m$ Nd:YAG 레이저)

  • Lee, Young-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.271-274
    • /
    • 2007
  • 본 연구는 $1.3{\mu}m$ 파장의 초고속 Nd:YAG레이저 펄스를 얻기 위해 AOM을 이용하여 모드록킹 Nd:YAG레이저 공진기를 구성하였다. 여기용 반도체 레이저는 중심파장 810nm, 출력 1.2W이며, 레이저 매질은 직경 3mm, 길이 10mm로 $Nd^{3+}$가 1.0at%로 도핑된 Nd:YAG Rod를 사용하였다. 모드록킹에는 음향광학 변조기(변조 주파수 40MHz)를 사용하여 펄스폭 ${\tau}p=80ps$의 극초단 펄스를 얻었다.

  • PDF

Harmonically mode-locked semiconductor-fiber ring laser and the output pulse compression (고차 조화 모드록킹된 반도체-광섬유 레이저 구성과 출력 광펄스의 압축)

  • 김동환
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.1
    • /
    • pp.58-63
    • /
    • 1999
  • A 10 GHz harmonically mode-locked semiconductor-fiber ring laser was implemented using a semiconductor optical amplifier at $1.5\mu\textrm{m}$ The laser pulse has 13~18 ps pulse duration, 0.4~0.6 nm spectral width and was positively chirped. The output pulse with an average power of 4 dBm was compressed to 6.8 ps using 2 km long standard single mode optical fiber.

  • PDF

High-power SESAM Mode-locked Yb:KGW Laser with Different Group-velocity Dispersions

  • Park, Byeong-Jun;Song, Ji-Yeon;Lee, Seong-Yeon;Yee, Ki-Ju
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.407-412
    • /
    • 2022
  • We report on a diode-laser-pumped mode-locked Yb:KGW laser system, which delivers ultrashort pulses down to 89 fs at a repetition rate of 63 MHz, with an average power of up to 5.6 W. A fiber-coupled diode laser at 981 nm, operated with a compact driver, is used to optically pump the gain crystal via an off-axis parabolic mirror. A semiconductor saturable-absorber mirror is used to initiate the pulsed operation. Laser characteristics such as the pulse duration, spectrum bandwidth, and output power are investigated by varying the intracavity dispersions via changing the number of bounces between negative-dispersive mirrors within the cavity. Short pulses with a duration of 89 fs, a center wavelength of 1,027 nm, and 3.6 W of output power are produced at a group-velocity dispersion (GVD) of -3,300 fs2. As the negative GVD increases, the pulse duration lengthens but the output power at the single-pulse condition can be enhanced, reaching 5.6 W at a GVD of -6,600 fs2. Because of pulse broadening at high negative GVDs, the highest peak intensity is achievable at a moderate GVD with our system.

Frequency-stabilized Femtosecond Mode-locked Laser for Optical Frequency Metrology

  • Yoon, Tai-Hyun;Kim, Eok-Bong;Park, Seong-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.131-134
    • /
    • 2003
  • We demonstrated an optical frequency synthesizer based on a femtosecond (fs) mode-locked Ti:sapphire (Ti:s) laser by simultaneously stabilizing the carrier-offset frequency, $f_{ceo}$, and repetition rate, $f_{ rep}$, referenced to the Cs atomic frequency standard. By using two wide-band digital phase-detectors we realized a phase-coherent link between $f_{rep} and f_{ceo} with the relation f_{ceo} = f_{AOM} 5/6f_{rep} ≡ 0, where f_{AOM} = 5/6f_{rep}$ is the phase-locked driving frequency of an acousto-optic modulator (AOM) in a self-referencing interferometer and $f_{rep}$ = 100 MHz. As a result, we could stabilize all components of the fs laser comb at once with an equal frequency separation $f_{rep}$ = 100 MHz with $f_{ceo}$ = 0. In our optical frequency synthesizer, the frequency of the nth component ($f_{n}$) is given exactly by the simple relation $f_n = nf_{rep}$, enabling us to use the fs laser comb as a frequency ruler in the optical frequency metrology.

Ultrashort Optical Pulse Generation at 10 GHz by Pulse Compression of Actively Mode-Locked Fiber Laser Output (능동 모드잠금 광섬유 레이저 출력의 펄스 압축에 의한 10 GHz 극초단 광 펄스 발생)

  • Seo, Dong-Sun;Weiner, Andrew M.
    • Journal of IKEEE
    • /
    • v.9 no.2 s.17
    • /
    • pp.115-122
    • /
    • 2005
  • We report 400 femto-second highly stable, nearly transform-limited, pulse generation at 10 GHz in $1540{\sim}1550$ nm wavelength region by adiabatic soliton pulse compression of an actively mode-locked fiber ring laser output. Without using any supermode selection device, supermode beating noise has been suppressed below -123 dB/Hz, resulting less than 100 femto-second timing jitters at the noise band of $1\;kHz{\sim}100\;MHz$.

  • PDF

Self-Oscillating, Third-Harmonic Mode-Locked l-GHz Nd:YLF Laser

  • Yu, Tae-Jun;Sung, Jai-Hee;Nam, Chang-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.51-54
    • /
    • 1999
  • A Nd:YLF laser has been actively mode-locked at the third-order harmonic cavity frequency using a lithium niobate phase modulator. Self-oscillating pulses of 14 ps duration, 1 GHz repetition rate, and 10mV average power at 1053 nm wavelength have been obtained. A 1GHz rf signal to drive a phase modulator was obtained by using 1GHz pulse train without rf synthesizer as a driver of an active mode locker.

Characteristics of Injection-Locked High Power Diode Laser (고출력 다이오드 레이저의 주입-잠금 과정 연구)

  • 문한섭;김중복;이호성;양성훈;김점술
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.222-227
    • /
    • 1995
  • A single mode, 100-mW diode laser was injection-locked by the master laser which was spectrally narrowed with Littman-type grating feedback. In the incomplete-injection-locking, we observed that two frequencies were simultaneously generated from the slave laser. The power ratio and frequency shift of two frequency components were proportional to the square of injected laser intensity. When the ratio of the injection intensity to the slave laser intensity was about $10^{-3}$, the injection-locking bandwidth was to be about 1.4 GHz. The bandwidth proportionally increased to the square root of the injection intensity, which was in good agreement with the theoretical predictions. The Iinewidth of the locked-laser was about 2.5 MHz, which was five times as narrow as that of free-running operation. ation.

  • PDF