• Title/Summary/Keyword: mode shape parameter

Search Result 137, Processing Time 0.023 seconds

Natural Frequency and Mode Shape Sensitivities of Non-Proportionally Damped Systems : Part 1, Distinct Natural Frequencies (비중복 고유치를 갖는 비비례 감쇠계의 고유치와 고유벡터의 민감도 해석법)

  • 김동옥;김주태;오주원;이인원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.1
    • /
    • pp.95-102
    • /
    • 1999
  • 본 연구에서는 중복되지 않는 고유치를 갖는 비비례 감쇠계의 고유치와 고유벡터의 민감도를 계산하는 새로운 방법을 제시하였다. 제안 방법에서는 (n+1)차의 대칭 행렬로 이루어진 대수방정식을 해석함으로써 n개의 자유도를 갖는 감쇠계의 고유치와 고유벡터의 설계변수에 대한 미분을 구한다. 제안 방법은 매우 간단하면서도 수치적 안정성이 보장되고 정확한 해를 주는 방법이다. 제안 방법의 검증을 위해 7자유도를 갖는 차량모델의 민감도해석을 예제에서 다루고 있다. 예제에서의 설계변수는 콘테이너의 질량으로 하였다.

  • PDF

Natural Frequency and Mode Shape Sensitivities of Non-Proportionally Damped Systems : Part II, Multiple Natural Frequencies (중복 고유치를 갖는 비비례 감쇠계의 고유치와 고유벡터의 민감도 해석법)

  • 김동옥;김주태;박선규;이인원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.1
    • /
    • pp.103-109
    • /
    • 1999
  • 본 연구에서는 중복 고유치를 갖는 비비례 감쇠 진동계의 고유치와 고유벡터의 민감도를 계산하는 새로운 방법을 제시하였다. 제안 방법은 매우 간단하면서도 수치적 안정성이 보장되고 정확한 해를 주는 방법이다. 제안 방법에서는 (n+m)차의 대칭 행렬로 이루어진 대수방정식을 해석함으로써 n개의 자유도를 갖는 감쇠계에 있어서 m차의 중복도를 갖는 고유치와 고유벡터의 설계변수에 대한 미분을 구한다. 제안 방법의 검증을 위해 5자유도를 갖는 단순구조물의 민감도해석을 예제에서 다루고 있다. 예제에서의 설계변수는 모델의 부분강성으로 하였다.

  • PDF

An Investigation of the Shear Buckling Characteristics of Sinusoidal Corrugated Steel Plates (정현파형 주름강판의 전단좌굴특성 분석)

  • Shon, Su-Deok;Yoo, Mi-Na;Lee, Seung-Jae;Kang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.10-19
    • /
    • 2014
  • Corrugated steel plates are made by fabricating thin steel plates to have trapezoidal or sinusoidal corrugation, and the corrugated plates are able to maintain high out-of-plane rigidity even when they are used instead of thick flat plates. Also, corrugated steel plates have almost no axial rigidity due to the accordion effect. Thus, if they are applied to the webs of plate girders, designing can be easily conducted so that the webs bear only shear stresses. However, unlike flat plates, the shear buckling of corrugated steel plates has very complex characteristics where buckling occurs due to the interaction of local and global buckling, besides local buckling and global buckling. For the investigation of the cause and characteristics of this interactive buckling, studies on sinusoidal corrugated steel plates are fewer than studies on trapezoidal corrugated steel plates. Therefore, in this study, the shear buckling characteristics of sinusoidal corrugated steel plates and the occurrence pattern of interactive buckling were investigated. For the calculation of shear buckling strength, a finite element program was used, and the analysis results were compared with the exact solution. In addition, the characteristics of buckling stress change and the change of buckling mode shape depending on corrugation thickness and shape parameter were analyzed, and by comparing these results with the results of a theoretical equation, the timing of buckling mode change was analyzed.

A Study on Robust Optimal Sensor Placement for Real-time Monitoring of Containment Buildings in Nuclear Power Plants (원전 격납 건물의 실시간 모니터링을 위한 강건한 최적 센서배치 연구)

  • Chanwoo Lee;Youjin Kim;Hyung-jo Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.155-163
    • /
    • 2023
  • Real-time monitoring technology is critical for ensuring the safety and reliability of nuclear power plant structures. However, the current seismic monitoring system has limited system identification capabilities such as modal parameter estimation. To obtain global behavior data and dynamic characteristics, multiple sensors must be optimally placed. Although several studies on optimal sensor placement have been conducted, they have primarily focused on civil and mechanical structures. Nuclear power plant structures require robust signals, even at low signal-to-noise ratios, and the robustness of each mode must be assessed separately. This is because the mode contributions of nuclear power plant containment buildings are concentrated in low-order modes. Therefore, this study proposes an optimal sensor placement methodology that can evaluate robustness against noise and the effects of each mode. Indicators, such as auto modal assurance criterion (MAC), cross MAC, and mode shape distribution by node were analyzed, and the suitability of the methodology was verified through numerical analysis.

Algebraic Method for Evaluating Natural Frequency and Mode Shape Sensitivities (고유진동수와 모우드의 미분을 구하기 위한 대수적 방법)

  • 정길호;김동욱;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.225-233
    • /
    • 1995
  • This paper presents an efficient numerical method for computation of eigenpair derivatives for the real symmetric eigenvalue problem with distinct and multiple eigenvalues. The method has very simple algorithm and gives an exact solution. Furthermore, it saves computer storage and CPU time. The algorithm preserves the symmetry and band of the matrices, allowing efficient computer storage and solution techniques. Thus, the algorithm of the proposed method will be inserted easily in the commercial FEM codes. Results of the proposed method for calculating the eigenpair derivatives are compared with those of Rudisill and Chu's method and Nelson's method which is efficient one in the case of distinct natural frequencies. As an example to demonstrate the efficiency of the proposed method in the case of distinct eigenvalues, a cantilever plate is considered. The design parameter of the cantilever plate is its thickness. For the eigenvalue problem with multiple natural frequencies, the adjacent eigenvectors are used in the algebraic equation as side conditions, they lie adjacent to the m (multiplicity of multiple natural frequency) distinct eigenvalues, which appear when design parameter varies. As an example to demonstrate the efficiency of the proposed method in the case of multiple natural frequencies, a cantilever beam is considered. Results of the proposed method fDr calculating the eigenpair derivatives are compared with those of Bailey's method (an amendation of Ojalvo's work) which finds the exact eigenvector derivatives. The design parameter of the cantilever beam is its height. Data is persented showing the amount of CPU time used to compute the first ten eigenpair derivatives by each method. It is important to note that the numerical stability of the proposed method is proved.

  • PDF

Accelerated Life Test of Industrial Cleaner Motor (산업용 청소기 모터의 가속수명시험)

  • Eom, Hak-Yong;Lee, Gi-Chun;Chang, Mu-Seong;Park, Jong-Won;Lee, Yong-Bum
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.193-200
    • /
    • 2018
  • Purpose: In this study, the life of the motor is investigated by performing the accelerated life test with the brush wear of the industrial cleaner motor as the main failure mode. Methods: The accelerating stress factor of the accelerated life test is a voltage, which can increase the number of revolutions of the motor to accelerate the brush wear due to the friction between the brush and the commutator. Also, the accelerating stress level was determined after determining the maximum allowable level of the voltage through the preliminary test. Results: The motor failure time at each accelerating stress level was predicted by regression analysis with brush wear length as performance degradation data. The main failure mode, which is brush wear, of the motor was reproduced by this test. The shape parameter of the Weibull distribution was confirmed to be the same statistically at all accelerating stress levels by the likelihood ratio test. Conclusion: The life of the motor was investigated by performing the accelerated life test with the brush wear of the industrial cleaner motor as the main failure mode. Through the accelerating test method of the cleaner motor, various life expectancy and life expectancy of the acceleration factor are predicted.

Experimental evaluation of crack effects on the dynamic characteristics of a prototype arch dam using ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.277-294
    • /
    • 2012
  • The aim of the study is to determine the modal parameters of a prototype damaged arch dam by operational modal analysis (OMA) method for some damage scenarios. For this purpose, a prototype arch dam-reservoir-foundation model is constructed under laboratory conditions. Ambient vibration tests on the arch dam model are performed to identify the modal parameters such as natural frequency, mode shape and damping ratio. The tests are conducted for four test-case scenarios: an undamaged dam with empty reservoir, two different damaged dams with empty reservoirs, and a damaged dam with full reservoir. Loading simulating random impact effects is applied on the dam to crack. Cracks and fractures occurred at the middle of the upper part of the dams and distributed through the abutments. Sensitivity accelerometers are placed on the dams' crests to collect signals for measurements. Operational modal analysis software processes the signals collected from the ambient vibration tests, and enhanced frequency domain decomposition and stochastic subspace identification techniques are used to estimate modal parameters of the dams. The modal parameters are obtained to establish a basis for comparison of the results of two techniques for each damage case. Results show that approximately 35-40% difference exists between the natural frequencies obtained from Case 1 and Case 4. The natural frequencies of the dam considerably decrease with increasing cracks. However, observation shows that the filled reservoir slightly affected modal parameters of the dam after severe cracking. The mode shapes obtained are symmetrical and anti-symmetrical. Apparently, mode shapes in Case 1 represent the probable responses of arch dams more accurately. Also, damping ratio show an increase when cracking increases.

The Acclerated Life Test of Hard Disk In The Environment of PACS (PACS 환경에서 하드디스크의 가속 수명시험)

  • Cho, Euy-Hyun;Park, Jeong-Kyu;Chae, Jong-Gyu
    • Journal of Digital Contents Society
    • /
    • v.16 no.1
    • /
    • pp.63-70
    • /
    • 2015
  • In this paper, we estimate the life cycle from acceleration life test about the hard disk of disk array of image storage of PACS. Webuil distribution was selected by the Anderson-Darling goodness-of-fit test with data of down time at $50^{\circ}C$ and $60^{\circ}C$. The equality test of shape parameter and scale parameter was conducted, so that the probability distribution estimated from data of down time at $50^{\circ}C$ and $60^{\circ}C$ was not statistically significant. The shape parameter was 1.0409, The characteristic life was 24603.5 hours at normal user condition($30^{\circ}C$) by the analysis of weibull-arrhenius modeling which included the acceleration factor of temperature, and The activation energy was 0.5011 eV through arrhenius modeling. The failure analysis of the failure samples of acceleration test and the samples of market return was conducted, so that the share percentage of failure mode was detail difference but the rank of share percentage was almost same. This study suggest the test procedure of acceleration test of hard disk drive in PACS using environment, and help the life estimation at manufacture and use.

Effect of Scale-down of Structure on Dynamic Characteristic Parameters in Bolted-Joint Beams (구조물의 소형화가 볼트 결합부의 동특성 파라미터에 미치는 영향 분석)

  • Kim, Bong-Suk;Lee, Seong-Min;Song, Jun-Yeob;Lee, Chang-Woo;Lee, Soo-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.108-116
    • /
    • 2007
  • To overcome many defects such as the high product cost, large energy consumption, and big space capacity in conventional mechanical machining, the miniaturization of machine tool and micro factory systems has been envisioned recently. The object of this paper is to research the effect of dynamic characteristic parameters in bolted-joint beams, which is widely applied to the joining of mechanical structures in order to identify structural system characteristics and to predict dynamic behavior according to scale-down from macro to micro system as the development of micro/meso-scale machine tool and micro factories. Modal parameters such as the natural frequency, damping ratio, and mode shape from modal testing and dynamic characteristics from finite element analysis are extracted with all 12 test beam models by materials, by size, and by joining condition, and then the results obtained by both methods are compared.

Dynamic Buckling Characteristics of 3-Free-Nodes Spatial Truss Model Under the Step Load (스텝 하중을 받는 3-자유절점 공간 트러스 모델의 동적 좌굴 특성)

  • Shon, Sudeok;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.59-68
    • /
    • 2020
  • In this paper, the dynamic snapping of the 3-free-nodes spatial truss model was studied. A governing equation was derived considering geometric nonlinearity, and a model with various conditions was analyzed using the fourth order Runge-Kutta method. The dynamic buckling phenomenon was observed in consideration of sensitive changes to the force mode and the initial condition. In addition, the critical load level was analyzed. According to the results of the study, the level of critical buckling load elevated when the shape parameter was high. Parallelly, the same result was caused by the damping term. The sensitive asymmetrical changes showed complex orbits in the phase space, and the critical load level was also becoming lowly. In addition, as the value of damping constant was high, the level of critical load also increases. In particular, the larger the damping constant, the faster it converges to the equilibrium point, and the occurrence of snapping was suppressed.