Algebraic Method for Evaluating Natural Frequency and Mode Shape Sensitivities

고유진동수와 모우드의 미분을 구하기 위한 대수적 방법

  • Published : 1995.10.01

Abstract

This paper presents an efficient numerical method for computation of eigenpair derivatives for the real symmetric eigenvalue problem with distinct and multiple eigenvalues. The method has very simple algorithm and gives an exact solution. Furthermore, it saves computer storage and CPU time. The algorithm preserves the symmetry and band of the matrices, allowing efficient computer storage and solution techniques. Thus, the algorithm of the proposed method will be inserted easily in the commercial FEM codes. Results of the proposed method for calculating the eigenpair derivatives are compared with those of Rudisill and Chu's method and Nelson's method which is efficient one in the case of distinct natural frequencies. As an example to demonstrate the efficiency of the proposed method in the case of distinct eigenvalues, a cantilever plate is considered. The design parameter of the cantilever plate is its thickness. For the eigenvalue problem with multiple natural frequencies, the adjacent eigenvectors are used in the algebraic equation as side conditions, they lie adjacent to the m (multiplicity of multiple natural frequency) distinct eigenvalues, which appear when design parameter varies. As an example to demonstrate the efficiency of the proposed method in the case of multiple natural frequencies, a cantilever beam is considered. Results of the proposed method fDr calculating the eigenpair derivatives are compared with those of Bailey's method (an amendation of Ojalvo's work) which finds the exact eigenvector derivatives. The design parameter of the cantilever beam is its height. Data is persented showing the amount of CPU time used to compute the first ten eigenpair derivatives by each method. It is important to note that the numerical stability of the proposed method is proved.

Keywords