• Title/Summary/Keyword: mode shape and natural frequency

Search Result 354, Processing Time 0.035 seconds

A new analytical approach for determination of flexural, axial and torsional natural frequencies of beams

  • Mohammadnejad, Mehrdad
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.655-674
    • /
    • 2015
  • In this paper, a new and simplified method is presented in which the natural frequencies of the uniform and non-uniform beams are calculated through simple mathematical relationships. The various vibration problems such as: Rayleigh beam under variable axial force, axial vibration of a bar with and without end discrete spring, torsional vibration of a bar with an attached mass moment of inertia, flexural vibration of the beam with laterally distributed elastic springs and also flexural vibration of the beam with effects of viscose damping are investigated. The governing differential equations are first obtained and then; according to a harmonic vibration, are converted into single variable equations in terms of location. Through repetitive integrations, the governing equations are converted into weak form integral equations. The mode shape functions of the vibration are approximated using a power series. Substitution of the power series into the integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of a non-trivial solution for system of equations. The efficiency and convergence rate of the current approach are investigated through comparison of the numerical results obtained with those obtained from other published references and results of available finite element software.

Equivalent Dynamic Modeling of Coil Bundle for Prediction of Dynamic Properties of Stator in Small Motors (소형 전동기의 고정자 동특성 예측을 위한 코일 다발의 등가 동적 모형화)

  • 은희광;고홍석;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.540-545
    • /
    • 2001
  • In case of small motors, coil bundle occupies a large portion of stator in view of mass and volume as well as dynamics. It is observed through modal test on the stator of an IPM BLDC (interior permanent magnet brushless direct current) motor that coil bundle wound on the stator core causes the first and second natural frequencies to decrease by about 20-30% compared with those of bare stator. Especially the third natural frequency is newly observed below 3 KHz, which is not observed on the bare stator. It is found that at the third mode the end-coil and the core vibrate out of phase in radial direction. In this paper, the stator is dynamically modeled in terms of the core and the coil bundle consisting of the end-coil and the slot coil based on the above observations for the prediction of dynamic properties. The core can easily be modeled using finite element method with its actual material properties and geometric shape. The concept of equivalent bending stiffness is used for modeling of the end-coil so that predictions may match with the measured natural frequencies for the end-coil cut out of the stator. Although the same concept can be applied to the slot coil, separation of the slot coil from the stator is impractical. Therefore, equivalent bending stiffness of the slot coil is determined through iterative comparisons with the measurements of natural frequencies of the stator with the slot coil in it.

  • PDF

Flapwise and non-local bending vibration of the rotating beams

  • Mohammadnejad, Mehrdad;Saffari, Hamed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.229-244
    • /
    • 2019
  • Weak form integral equations are developed to investigate the flapwise bending vibration of the rotating beams. Rayleigh and Eringen nonlocal elasticity theories are used to investigate the rotatory inertia and Size-dependency effects on the flapwise bending vibration of the rotating cantilever beams, respectively. Through repetitive integrations, the governing partial differential equations are converted into weak form integral equations. The novelty of the presented approach is the approximation of the mode shape function by a power series which converts the equations into solvable one. Substitution of the power series into weak form integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of the non-trivial solution for resulting system of equations. Accuracy of the proposed method is verified through several numerical examples, in which the influence of the geometry properties, rotatory inertia, rotational speed, taper ratio and size-dependency are investigated on the natural frequencies of the rotating beam. Application of the weak form integral equations has made the solution simpler and shorter in the mathematical process. Presented relations can be used to obtain a close-form solution for quick calculation of the first five natural frequencies of the beams with flapwise vibration and non-local effects. The analysis results are compared with those obtained from other available published references.

Study on modified differential transform method for free vibration analysis of uniform Euler-Bernoulli beam

  • Liu, Zhifeng;Yin, Yunyao;Wang, Feng;Zhao, Yongsheng;Cai, Ligang
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.697-709
    • /
    • 2013
  • A simulation method called modified differential transform is studied to solve the free vibration problems of uniform Euler-Bernoulli beam. First of all, the modified differential transform method is derived. Secondly, the modified differential transformation is applied to uniform Euler-Bernoulli beam free-free vibration. And then a set of differential equations are established. Through algebraic operations on these equations, we can get any natural frequency and normalized mode shape. Thirdly, the FEM is applied to obtain the numerical solutions. Finally, mode experimental method (MEM) is conducted to obtain experimental data for analysis by signal processing with LMS Test.lab Vibration testing and analysis system. Experimental data and simulation results are illustrated to be in comparison with the analytical solutions. The results show that the modified differential transform method can achieve good results in predicting the solution of such problems.

Experimental investigation of a method for diagnosing wall thinning in an artificially thinned carbon steel elbow based on changes in modal characteristics

  • Byunyoung Chung ;Jonghwan Kim ;Daesic Jang;Sunjin Kim;Youngchul Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.947-957
    • /
    • 2023
  • Curved cylindrical structures such as elbows have a non-uniform thickness distribution due to their fabrication process, and as a result have a number of complex mode shapes, including circumferential and axial nodal patterns. In nuclear power plants, material degradation is induced in pipes by flow accelerated erosion and corrosion, causing the wall thickness of carbon steel elbows to gradually thin. The corresponding frequencies of each mode shape vary according to the wall thinning state. Therefore, the thinning state can be estimated by monitoring the varying modal characteristics of the elbow. This study investigated the varying modal characteristics of artificially thinned carbon steel elbows for each thinning state using numerical simulation and experimental methods (MRIT, Multiple Reference Impact Test). The natural frequencies of specified mode shapes were extracted, and results confirmed they linearly decreased with increasing thinning. In addition, by comparing single FRF (Frequency Response Function) data with the results of MRIT, a concise and cost effective thinning estimation method was suggested.

Vibration Characteristic Analysis of an Annular Cylindrical PWR Fuel Rod according to the Cross-sectional Dimensions and the Span Length (가압경수로용 환형 실린더 연료봉의 단면치수와 스팬길이에 따른 진동특성해석)

  • Lee, Kang-Hee;Kim, Jae-Yong;Lee, Yung-Ho;Yoon, Kyung-Ho;Kim, Hyung-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.197-201
    • /
    • 2007
  • Vibration characteristics of an annular cylindrical fuel rod, which was proposed as a candidate design of fuel's cross section for the ultra-high burnup nuclear fuel, according to the cross-sectional dimensions and the number of supports or the span length were analytically studied. Finite element(FE) modeling for the annular cross sectional fuel was based on the methodology, that have been proven by the test verification, for the conventional PWR nuclear fuel rod. A commercial FEA code, ABAQUS, was used for the FE modeling and analysis. A planar beam element (B21) that uses a linear interpolation was used for the fuel rod and a linear spring element for the spring and dimple of the SG. Natural frequencies and mode shape were calculated according to the preliminary design candidates for the fuel's cross sectional dimension and the number of span. From the analysis results, the design scheme of the annular fuel compatible to the present PWR nuclear reactor core was discussed in terms of the number of supports and fuel's cross section.

  • PDF

Modal Analysis and Experiment of a Simply-supported Beam with Non-uniform Cross Sections (불균일 단면을 갖는 단순지지 보의 모달해석 및 실험)

  • Kim, In-Woo;Ryu, Bong-Jo;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8654-8664
    • /
    • 2015
  • Beam-type structures with non-uniform cross sections are widely used in mechanical, architectural, and civil engineering fields. This paper deals with dynamic characteristics and vibration problems. Governing equations are first derived by using local coordinates. Their solutions are then assumed by using Galerkin's mode summation method. Bisection method is also applied in solving the determinant of the matrix which can provide natural frequencies. Whereas finite element methods adopt admissible functions satisfying only geometric boundary condition, in this study we apply Galerkin's mode summation method which uses eigen-functions satisfying both governing equations and boundary conditions. Modal analysis and experimental tests are finally performed using simply-supported beams with four different non-uniform cross-sections. Our analytical results then show good agreement with experimental ones.

Finite Element Analysis of Sloshing Eigen Behavior in Horizontal Baffled Fuel Tank (수평으로 놓인 배플형 연료탱크의 슬로싱 고유거동에 관한 유한요소 해석)

  • 조진래;하세윤;이홍우;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.619-628
    • /
    • 2002
  • This paper deals with the FE analysis for the free vibration of sloshing in horizontal cylindrical tank with baffles. We use Laplace equation based on potential theory as governing equation. This problem is solved by FEM using lineal isoparametric elements. We assume that the tank as well as baffles is rigid body and by separating nodes into two at the baffle location, baffle effect is obtained by separating nodes into two at the baffle location. For the calculation of natural frequencies and mode shapes, we introduce Lanczos transformation and Jacobi iteration methods. Numerical results of the first longitudinal and transverse modes, while comparing with literature cited, are very good. In order for the baffle effects on the free vibration of sloshing, various combinations of baffle parameters, which are location, inner diameter and number, are examined.

Design Enhancement to Avoid Radar Mast Resonance in Large Ship using Design of Experiments (실험계획법을 이용한 대형 선박용 레이더 마스트의 공진회피 설계)

  • Park, Jun Hyeong;Lee, Daeyong;Yang, Jung-Wook;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.50-60
    • /
    • 2019
  • Recently, problems with excessive vibration of the radar masts of large bulk carriers and crude oil tankers have frequently been reported. This paper explores a design method to avoid the resonance of a radar mast installed on a large ship using various design of experiment (DOE) methods. A local vibration test was performed during an actual sea trial to determine the excitation sources of the vibration related to the resonant frequency of the radar mast. DOE methods such as the orthogonal array (OA) and Latin hypercube design (LHD) methods were used to analyze the Pareto effects on the radar mast vibration. In these DOE methods, the main vibration performances such as the natural frequency and weight of the radar mast were set as responses, while the shape and thickness of the main structural members of the radar mast were set as design factors. From the DOE-based Pareto effect results, we selected the significant structural members with the greatest influence on the vibration characteristics of the radar mast. Full factorial design (FFD) was applied to verify the Pareto effect results of the OA and LHD methods. The design of the main structural members of the radar mast to avoid resonance was reviewed, and a normal mode analysis was performed for each design using the finite element method. Based on the results of this normal mode analysis, we selected a design case that could avoid the resonance from the major excitation sources. In addition, a modal test was performed on the determined design to verify the normal mode analysis results.

Algebraic Method for Evaluating Natural Frequency and Mode Shape Sensitivities (고유진동수와 모우드의 미분을 구하기 위한 대수적 방법)

  • 정길호;김동욱;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.225-233
    • /
    • 1995
  • This paper presents an efficient numerical method for computation of eigenpair derivatives for the real symmetric eigenvalue problem with distinct and multiple eigenvalues. The method has very simple algorithm and gives an exact solution. Furthermore, it saves computer storage and CPU time. The algorithm preserves the symmetry and band of the matrices, allowing efficient computer storage and solution techniques. Thus, the algorithm of the proposed method will be inserted easily in the commercial FEM codes. Results of the proposed method for calculating the eigenpair derivatives are compared with those of Rudisill and Chu's method and Nelson's method which is efficient one in the case of distinct natural frequencies. As an example to demonstrate the efficiency of the proposed method in the case of distinct eigenvalues, a cantilever plate is considered. The design parameter of the cantilever plate is its thickness. For the eigenvalue problem with multiple natural frequencies, the adjacent eigenvectors are used in the algebraic equation as side conditions, they lie adjacent to the m (multiplicity of multiple natural frequency) distinct eigenvalues, which appear when design parameter varies. As an example to demonstrate the efficiency of the proposed method in the case of multiple natural frequencies, a cantilever beam is considered. Results of the proposed method fDr calculating the eigenpair derivatives are compared with those of Bailey's method (an amendation of Ojalvo's work) which finds the exact eigenvector derivatives. The design parameter of the cantilever beam is its height. Data is persented showing the amount of CPU time used to compute the first ten eigenpair derivatives by each method. It is important to note that the numerical stability of the proposed method is proved.

  • PDF