• Title/Summary/Keyword: mode behavior

Search Result 2,032, Processing Time 0.036 seconds

A Study on the Collapse Characteristics of Al/CFRP Square Structural Member for Light Weight (경량화용 Al/CFRP 사각 구조부재의 압궤 특성에 관한 연구)

  • Hwang, Woo-Chae;Sim, Jae-Ki;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.219-224
    • /
    • 2011
  • Aluminum or CFRP is representative one of the lightweight materials. Collapse behavior of Al/CFRP square structural member was evaluated in this study based on the respective collapse behavior of aluminum and CFRP member. Al/CFRP square structural members were manufactured by wrapping CFRP prepreg sheets outside the aluminum hollow members in the autoclave. Because the CFRP is an anisotropic material with mechanical properties, The Al/CFRP square structural members stacked at different angles(${\pm}15^{\circ}$, ${\pm}45^{\circ}$, ${\pm}90^{\circ}$, $90^{\circ}/0^{\circ}$ and $0^{\circ}/90^{\circ}$ where the direction on $0^{\circ}$ coincides with the axis of the member) and interface numbers(2, 3, 4, 6 and 7). The axial impact collapse tests were carried out for each section members. Collapse mode and energy absorption characteristics of the each member were analyzed.

A Study on the Fracture Behavior of Laminated Carbon/Epoxy Composite by Acoustic Emission (음향방출법을 이용한 적층복합재료의 파괴거동 연구)

  • Oh, Jin-Soo;Woo, Chang-Ki;Rhee, Zhang-Kyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.326-333
    • /
    • 2010
  • In this study, DAQ and TRA modules were applied to the CFRP single specimen testing method using AE. A method for crack identification in CFRP specimens based on k-mean clustering and wavelet transform analysis are presented. Mode I on DCB under vertical loading and mode II on 3-points ENF testing under share loading have been carried out, thereafter k-mean method for clustering AE data and wavelet transition method per amplitude have been applied to investigate characteristics of interfacial fracture in CFRP composite. It was found that the fracture mechanism of Carbon/Epoxy Composite to estimate of different type of fractures such as matrix(epoxy resin) cracking, delamination and fiber breakage same as AE amplitude distribution using a AE frequency analysis. In conclusion, the presented results provide a foundation for using wavelet analysis as efficient crack detection tool. The advantage of using wavelet analysis is that local features in a displacement response signal can be identified with a desired resolution, provided that the response signal to be analyzed picks up the perturbations caused by the presence of the crack.

Adaptive Control of the Atomic Force Microscope of Tapping Mode: Chaotic Behavior Analysis (진동방식의 원자간력 현미경으로 표면형상 측정시 발행하는 혼돈현상의 적응제어)

  • Kang, Dong-Hunn;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.57-65
    • /
    • 2000
  • In this paper, a model reference adaptive control for the atomic force microscope (AFM) of tapping mode is investigated. The dynamics between the AFM system and al sample is mathematically modeled as a second order spring-mass-damper system with oscillatory inputs. The attractive and repulsive forces between the tip of the AFM system and the sample are derived using the Lennard-Jones potential energy. By non-dimensionalizing the displacement of the tip and the input frequency, the chaotic behavior near a resonance frequency is better depicted through the non-dimensionalized equations. Four nonlinear analysis techniques, a phase portrait, sensitive dependence on initial conditions, a power spectral density function, and a Pomcare map are investigated. Because the equations of motion derived in this paper involve unknown parameter values such as the damping effect of the air and the interaction constants between materials, the standard model reference adaptive control is adopted. Two control objectives, the prevention of chaos and the tracking of reference signal, are pursued. Simulation results are included.

  • PDF

Dynamic Characteristic Evaluation of Spin Coater Module for GaAs Wafer Bonding (화합물 반도체 본딩용 Spin Coater Module의 동특성 평가)

  • Song Jun Yeob;Kim Ok Koo;Kang Jae Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.144-151
    • /
    • 2005
  • Spin coater is regarded as a major module rotating at high speed to be used build up polymer resin thin film layer fur bonding process of GaAs wafer. This module is consisted of spin unit for spreading uniformly, align device, resin spreading nozzle and et. al. Specially, spin unit which is a component of module can cause to vibrate and finally affect to the uniformity of polymer resin film layer. For the stability prediction of rotation velocity and uniformity of polymer resin film layer, it is very important to understand the dynamic characteristics of assembled spin coater module and the dynamic response mode resulted from rotation behavior of spin chuck. In this paper, stress concentration mode and the deformed shape of spin chuck generated due to angular acceleration process are presented using analytical method for evaluation of structural safety according to the revolution speed variation of spin unit. And also, deformation form of GaAs wafer due to dynamic behavior of spin chuck is presented fur the comparison of former simulated results.

An Experimental Study on the Vibrational Characteristics of the Rotor Blade with Fiber Reinforced Plastics (복합재료 FRP로 제작된 Rotor Blade 진동특성 분석에 관한 실험적 연구)

  • Paik, J.S.;Lee, K.S.;Park, J.V.;Lee, J.T.;Son, C.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1232-1240
    • /
    • 2005
  • The purpose of this paper is that investigates the dynamic behavior characteristic of W.T.S (wind turbine system) and carries out the evaluation analysis during operating W.T.S. To investigate the dynamic behavior characteristic of W.T.S, the experiments to measure vibration of the blade from the attached accelerometer on the flap and edge section of the blade that is one of the most important elements of dynamic characteristic of W.T.S are performed. Natural frequency and mode shape are calculated with commercial program ( ANSYS) using the measured vibration acceleration that receives the signal with F.F.T Analyzer from the accelerometer For validation of these experiments, the finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape. The results indicate that experimental values have good agreements with the finite element analysis.

A Study on the Design of PLL for Improving of Characteristics of Locking Time and Jitter (Locking Time과 Jitter 특성의 개선을 위한 PLL 설계에 관한 연구)

  • Park, Jae-Boum;Park, Yun-Sik;Kim, Hwa-Young;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1188-1191
    • /
    • 2003
  • In this paper, we focus our attention on the improvement of locking time and jitter parameter and propose the new structure of PLL which combined with the FVC, FOVI Matcher(FVC-Output and VCO-input Matching Circuit), Control Circuit and the conventional charge pump PLL. Using fast operation characteristics of the FVC, the circuit matching FVC-Output and VCO-input (FOVI Matcher) made to synchronize very fast. Fast locking time is usually required for application where the PLL has to settle rapidly if they switch from an idle mode to a normal mode and to track high-frequency data bit rate in data recovery systems. After a fast acqusition is achieved by the using the FVC, the conventional PLL operates for removing the phase error between the reference signal and the feedback signal. Therefore this structure can improve the trade-off between acquisition behavior and locked behavior.

  • PDF

Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.649-661
    • /
    • 2017
  • This paper is motivated by the lack of studies in the technical literature concerning to the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) plate has smooth variation of CNT fraction based on the power-law distribution in the thickness direction, and the material properties are also estimated by the extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Parametric studies are carried out to highlight the influence of CNTs volume fraction, waviness and aspect ratio, boundary conditions and elastic foundation on vibrational behavior of FG-CNT thick sectorial plates. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. For an overall comprehension on 3-D vibration of annular sector plates, some mode shape contour plots are reported in this research work.

Microstructure and Mechanical Properties of High Mn TWIP Steels (고 Mn계 TWIP 강의 미세조직과 기계적 성질)

  • Jung, J.K.;Lee, O.Y.;Park, Y.K.;Kim, D.E.;Jin, K.G.;Kim, S.K.;Song, K.H.
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.627-633
    • /
    • 2008
  • The austenitic Fe-Mn alloys have received considerable attention as a possible candidate for the automotive structural materials due to their high strength and high formability with high elongation. This research investigates the effect of alloying elements on the phase transformation, deformation behavior and mechanical properties in high Mn steels for the development of a high strength high ductility steel. The mechanical stability of austenitic phases is very important for high ductility and it depends largely on the composition of carbon, manganese and aluminum. The dominant deformation mode shifts from TRIP to TWIP mode as the amount of C, Mn and Al is increased. Especially, even a small amount of Al addition facilitates significantly TWIP deformation due to the increase of stacking fault energy in Fe-Mn alloys, this leads to increase the ductility and also decrease the crack sensitivity.

Disintegration and Spreading Behavior of the Spray emanating from a Liquid-thruster Injector (액체추력기 인젝터로부터 발생하는 분무의 분열 및 확산 거동)

  • Kim, Jin-Seok;Jung, Hun;Kim, Jeong-Soo;Kim, Sung-Cho;Park, Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.113-116
    • /
    • 2008
  • Pseudo-3D Spatial distribution of spray droplets is investigated by using Dual-mode Phase Doppler Anemometry (DPDA) in order to examine the disintegration and spreading behavior of spray exiting from liquid-thruster injector. Spray injected from nozzle orifice with length-to-diameter ratio $(L/d_o)$ of 1.67 and at the injection pressure of 27.6 bar is aligned to the vertical. Vertical and horizontal mean velocities of droplets, Arithmetic Mean Diameter (AMD), Sauter Mean Diameter (SMD), and volumetric flux decrease as droplets travel from center/upstream toward outer region/downstream of spray.

  • PDF

Similarity Analysis for the Dispersion of Spiraling Modes on Metallic Nanowire to a Planar Thin Metal Layer

  • Lee, Dong-Jin;Park, Se-Geun;Lee, Seung-Gol;O, Beom-Hoan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.538-542
    • /
    • 2013
  • We propose a simple model to elucidate the dispersion behavior of spiraling modes on silver nanowire by finding correspondence parameters and building a simple equivalent relationship with the planar insulator-metal-insulator geometry. The characteristics approximated for the proposed structure are compared with the results from an exact solution obtained by solving Maxwell's equation in cylindrical coordinates. The effective refractive index for our proposed equivalent model is in good agreement with that for the exact solution in the 400-2000 nm wavelength range. In particular, when the radius of the silver nanowire is 100 nm, the calculated index shows typical improvements; the average percentage error for the real part of the effective refractive index is reduced to only 5% for the $0^{th}$ order mode (11.9% in previous results) and 1.5% for the $1^{st}$ order mode (24.8% in previous results) in the 400-800 nm wavelength range. This equivalent model approach is expected to provide further insight into understanding the important behavior of nanowire waveguides.