• Title/Summary/Keyword: modal parameter extraction

Search Result 18, Processing Time 0.038 seconds

Characteristics and Applications of a Strain Modal Testing Method (변형률 모드시험방법의 특성 및 응용)

  • 차주환;하태희;이건명
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.420-427
    • /
    • 1998
  • A strain modal testing method has been applied to a cantilever beam to investigate the characteristics of the method. By applying the method to an analytical and an experimental system, it was shown that accurate modal parameters can be estimated from strain frequency response functions using a current modal parameter extraction algorithm. The modal parameters estimated by the method are more accurate than those by the conventional method which uses accelerometers when the tested system is of light weight. The method can be used to predict strain responses and excitation forces for given excitation forces and responses, respectively. Cracks on a structure can be detected by measuring strian FRFs and comparing them with the original ones.

  • PDF

A Time Domain Modal Parameter Estimation Method for Multiple Input-Output Systems (시간영역에서의 다중 입력-출력시스템의 모드매개변수 추정방법)

  • 이건명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1997-2004
    • /
    • 1994
  • A model analysis method has been developed in the paper. The method estimates the modal parameters of multiple input-output systems, assesses their quality, and seperates structural modes form computation ones. The modal parameter extraction algorithm is the least squares method with a finite difference model relating input and output time data. The quality of the estimated system model can be assessed in narrow frequency bands by comparing the measured and model predicted responses in time domain with the aid of digital filters. Structural modes can be effectively separated from computational ones using the convergence factor which represents the pole convergence rate. The modal analysis method has been applied to simulated and experimental vibration data to evaluate its utility and limitations.

Modal Parameter Extraction of Seohae Cable-stayed Bridge : II. Natural Frequency and Damping Ratio (서해대교 사장교의 동특성 추출 : II. 고유진동수와 감쇠비)

  • Kim, Byeong Hwa;Park, Jong-Chil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.641-647
    • /
    • 2008
  • This paper introduces a new technique that can extract natural frequencies and damping ratios from output-only vibration data. Firstly, the free vibration data is obtained from the cross correlations of the output-only response data using a singular value decomposition process. Secondly, the well-known system identification algorithm is applied to extract the natural frequencies and damping ratios from the extracted free vibration data. Comparing to ERADC technique, the accuracy of the proposed modal parameter identification algorithm has been numerically examined. Furthermore, the practicability of the proposed algorithm has been examined through the output-only acceleration data collected from the Seohae cable-stayed bridge. Using the proposed technique, total 24 modes have been identified for the deck plate motions of the bridge.

Assessment of modal parameters considering measurement and modeling errors

  • Huang, Qindan;Gardoni, Paolo;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.717-733
    • /
    • 2015
  • Modal parameters of a structure are commonly used quantities for system identification and damage detection. With a limited number of studies on the statistics assessment of modal parameters, this paper presents procedures to properly account for the uncertainties present in the process of extracting modal parameters. Particularly, this paper focuses on how to deal with the measurement error in an ambient vibration test and the modeling error resulting from a modal parameter extraction process. A bootstrap approach is adopted, when an ensemble of a limited number of noised time-history response recordings is available. To estimate the modeling error associated with the extraction process, a model prediction expansion approach is adopted where the modeling error is considered as an "adjustment" to the prediction obtained from the extraction process. The proposed procedures can be further incorporated into the probabilistic analysis of applications where the modal parameters are used. This study considers the effects of the measurement and modeling errors and can provide guidance in allocating resources to improve the estimation accuracy of the modal data. As an illustration, the proposed procedures are applied to extract the modal data of a damaged beam, and the extracted modal data are used to detect potential damage locations using a damage detection method. It is shown that the variability in the modal parameters can be considered to be quite low due to the measurement and modeling errors; however, this low variability has a significant impact on the damage detection results for the studied beam.

Photogrammetry-based Modal Parameter Extraction from Motion Pictures (사진측량 기반 동영상 동특성 추출)

  • Kim, Byeong-Hwa;Yeo, Keum-Soo;Kim, Soo-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.308-315
    • /
    • 2010
  • This study introduces a new technique to estimate modal parameters of a vibrating string using motion pictures. The approach requires two motion pictures for a vibrating string captured simultaneously by typical potable digital cameras or camcorders. Applying the space intersection theory and the space resection theory in photogrammetry, the steroscopic images for the string are constructed from two flat plane pictures. Then the three dimensional displacement components of the string are extracted by a multiple template matching technique. Finally the modal parameters of the string are estimated from the resulting displacement time histories. The accuracy of the approach has been examined through a small-scale mock-up of a string.

A Study on the Characteristics and Applications of a Strain Modal Testing Method (변형률 모드시험방법의 특성 및 응용)

  • 차주환;하태희;이건명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.216-221
    • /
    • 1997
  • A strain modal testing method has been applied to a cantilever beam to investigate the characteristics of the method. By applying the method to an analytical and an experimental system, it was shown that accurate modal parameters can be estimated from the FRFs using a current modal parameter extraction algorithm. The modal parameters estimated by the method are more accurate than those by the conventional method which uses accelerometers when the tested system is of light weight. The strain response for a given excitation force and the force which causes the response can be predicted using the measured strain FRFS.

  • PDF

Modal analysis of a vehicle cabin model having high decoupling tendency (다종의 가진방법을 이용한 비연성 경향을 가진 차실모형의 모우드 해석)

  • 김시조;조동우;한상욱
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.25-37
    • /
    • 1992
  • Interior noise in a car is known to have an important influence on product acceptability. This noise is closely correlated with structural-acoustic vibration. When considering noise problem, the structural-acoustic relation of a vehicle cabin model needs to be identified. However, it is very difficult to get the modal parameters of this kind of cabin structure composed of thin plates: because it not only can be excited by the acoustic vibration of cavity, but also tends to have decoupling effects of one plate from another. In order to obtain modal parameters more precisely, various excitation techniques, i.e. impact, pure random, burst random, and swept sine testing are applied for the first step. In the case of the cabin model, impact and swept sine testing show good results. Next, the determination of the excitation point by trial- and-error and the accurate measurements of FRF's are performed with these methods. The modal parameter extraction is carried out for the final step. This paper proposes a new approach to find the modal parameters more reliably in the case of high decoupling effects. That is, the convergence of MIF and MCF in each panel, which provide some criteria for the validity of the obtained modal parameters, is observed. And from those results, the pretty accurate modal parameters can be determined. A comparative assessment between the modal testing and the FEM is also performed.

  • PDF

Modal Parameter Extraction Using a Digital Camera (디지털 카메라를 이용한 구조물의 동특성 추출)

  • Kim, Byeong-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.61-68
    • /
    • 2008
  • A set of modal parameters of a stay-cable have been extracted from a moving picture captured by a digital camera supported by shaking hands. It is hard to identify the center of targets attached on the cable surface from the blurred cable motion image, because of the high speed motion of cable, low sampling frequency of camera, and the shaking effect of camera. This study proposes a multi-template matching algorithm to resolve such difficulties. In addition, a sensitivity-based system identification algorithm is introduced to extract the natural frequencies and damping ratios from the ambient cable vibration data. Three sets of vibration tests are conducted to examine the validity of the proposed algorithms. The results show that the proposed technique is pretty feasible for extracting modal parameters from the severely shaking motion pictures.

  • PDF

Modal Parameter Extraction Using a Digital Camera (카메라를 이용한 구조물의 동특성 추출)

  • Kim, Byeong-Hwa
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1229-1236
    • /
    • 2008
  • A set of modal parameters of a stay-cable have been extracted fi:on a moving picture captured by a digital camera supported by shaking hands. It is hard to identify the center of targets attached on the cable surface from the blurred cable motion image, because of the high speed motion of cable, low sampling frequency of camera, and the shaking effect of camera. This study proposes a multi-template matching algorithm to resolve such difficulties. In addition, a sensitivity-based system identification algorithm is introduced to extract the natural frequencies and damping ratios from the ambient cable vibration data. Three sets of vibration tests are conducted to examine the validity of the proposed algorithms. The results show that the proposed technique is pretty feasible for extracting modal parameters from the severely shaking motion pictures.

Vibration characteristics of offshore wind turbine tower with gravity-based foundation under wave excitation

  • Nguyen, Cong-Uy;Lee, So-Young;Huynh, Thanh-Canh;Kim, Heon-Tae;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.405-420
    • /
    • 2019
  • In this study, vibration characteristics of offshore wind turbine tower (WTT) with gravity-based foundation (GBF) are identified from dynamic responses under wave-induced excitations. The following approaches are implemented to achieve the objective. Firstly, the operational modal analysis methods such as frequency domain decomposition (FDD) and stochastic subspace identification (SSI) are selected to estimate modal parameters from output-only dynamic responses. Secondly, a GBF WTT model composed of superstructure, substructure and foundation is simulated as a case study by using a structural analysis program, MIDAS FEA. Thirdly, wave pressures acting on the WTT structure are established by nonlinear regular waves which are simulated from a computational fluid software, Flow 3D. Wave-induced acceleration responses of the target structure are analyzed by applying the simulated wave pressures to the GBF WTT model. Finally, modal parameters such as natural frequencies and mode shapes are estimated from the output-only acceleration responses and compared with the results from free vibration analysis. The effect of wave height and period on modal parameter extraction is also investigated for the mode identification of the GBF WTT.