• Title/Summary/Keyword: modal analysis method

Search Result 1,169, Processing Time 0.024 seconds

Analytical Method to Analyze the Effect of Tolerance on the Modal Characteristic of Multi-body Systems in Dynamic Equilibrium (동적 평형위치에 있는 다물체계의 모드특성에 미치는 공차의 영향 분석을 위한 해석적 방법)

  • Kim, Bum-Suk;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.109-114
    • /
    • 2007
  • Analytical method to analyze the effect of tolerance on the modal characteristic of multi-body systems in dynamic equilibrium position is suggested in this paper. Monte-Carlo Method is conventionally employed to perform the tolerance analysis. However, Monte-Carlo Method spends too much time for analysis and has a greater or less accuracy depending on sample condition. To resolve these problems, an analytical method is suggested in this paper. By employing the sensitivity information of mass, damping and stiffness matrices, the sensitivities of damped natural frequencies and the transfer function can be calculated at the dynamic equilibrium position. The effect of tolerance on the modal characteristic can be analyzed from tolerance analysis method.

  • PDF

Structural Dynamic Analysis using Multi-FRF Synthesis Method (다중전달 함수합성법을 이용한 구조물의 동특성 해석)

  • 정재훈;지태한;박영필
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.139-145
    • /
    • 1998
  • A great deal of effort has been invested in upgrading the performance and the efficiency of dynamic analysis of mechanical structures. Using experimental modal analysis(EMA) or finite element analysis(FEA) data of mechanical structures, the performance and efficiency can be effectively evaluated. In order to analyze complex structures such as automobiles and aircrafts, for the sake of computing efficiency, the dynamic substructuring techniques that allow to predict the dynamic behavior of a structure are widely used. Through linking a modal model obtained from EMA and an analytical model obtained from FEA, the best conditioned strucutres can be proposed. In this study, a new algorithm of substructre synthesis method, Multi-FRF synthesis method, is proposed to analyze a structure composed of many substructures.

  • PDF

Updating Algorithms of Finite Element Model Using Singular Value Decomposition and Eigenanalysis (특이값 분해와 고유치해석을 이용한 유한요소모델의 개선)

  • 김홍준;박영필
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.163-173
    • /
    • 1999
  • Precise and reasonable modelling is necessary and indispensable to the analysis of dynamic characteristics of mechanical structures. Also. the effective prediction of the change of modal properties due to the variation of design parameters is required especially for the application of finite element method to the structural dynamics problems. To meet those necessity and requirement, three model updating algorithms are proposed for finite element methods. Those algorithms are based on sensitivity analysis of the modal data obtained from experimental modal analysis(EMA) and analytical modal analysis(AMA). The adapted sensitivity analysis methods of the algorithms are 1)eigensensitivity(EGNS) method. 2)frequency response function sensitivity(FRFS) method. 3)sensitivity based element-by-element method (SBEEM), Singular value decomposition(SVD) is used for performing eigenanalysis and parameter estimation in the updating process. Those algorithms are applied to finite element of a plate and the updating capability of each algorithm is compared in terms of accuracy. reliability and stability of the updating process. It is shown that the model updating method using frequency response function is superior to the other methods in view of various updating capabilities.

  • PDF

A Study on the F.E. Model Updating and Optimization for Vehicle Subframe (차량 서브프레임의 유한요소 모델의 개선 및 최적화에 대한 연구)

  • 허덕재;이근수;홍석윤;박태원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.220-227
    • /
    • 2002
  • This paper describes an integrated approach process to carry out pre-test, model correlation and updating analysis on the sub-frame of a vehicle. In this study, it was found that the modal test could be more efficient when the exciting point was selected on the area with high driving point residue. Such area could be located with the aid of finite element modal analysis. The model correlation was appraised in conjunction with the modal parameters between modal test and finite elements analysis. Also, the finite element model updating was obtained the good resultant using the iteration method based on sensitivity analysis results that carried out the variation of natural frequencies and MAC for the material properties. Finally, optimization of vehicle subframe was carried out the analysis of core location and physical properties by tow steps.

Lateral Load Distribution Factor for Modal Pushover Analysis (고차모드 영향이 반영된 Pushover 해석을 위한 횡하중 분배계수 제안)

  • Kim, Geon-Woo;Song, Jin-Gyu
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.236-243
    • /
    • 2005
  • Nonlinear static analysis is used to quantify the resistance of the structure to lateral deformation and to gauge the mode of deformation and intensity of local demands. A simple method for the nonlinear static analysis of complex building structures subjected to monotonically increasing horizontal loading(pushover analysis) is presented. The method is designed to be a part of new methodologies for the seismic design and evaluation of structures. A variety of existing pushover analysis procedures are currently being consolidated under programs such as ATC 40 and FEMA 273. And various techniques have been recommended, including the use of constant lateral force profiles and the use of adaptive and multimodal approaches. In this paper a modal pushover analysis using design response spectra of UBC 97 is proposed. Proposed method is compared against the method in FEMA 273 and ATC 40, and results of time history analysis.

  • PDF

Modal Identification of a Slender Structure using the Proper Orthogonal Decomposition Method (Proper Orthogonal Decomposition 기법을 이용한 세장한 구조물의 모드인자 파악)

  • Ham, Hee-Jung
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.135-141
    • /
    • 2008
  • In this paper, the Proper Orthogonal Decomposition (POD) method, which is a statistical analysis technique to find the modal characteristics of a structure, is adapted to identify the modal parameters of a tall chimney structure. A wind force time history, which is applied to the structure, is obtained by a wind tunnel test of a scale down model. The POD method is applied on the wind force induced responses of the structure, and the true normal modes of the structure can be obtained. The modal parameters including, natural frequency, mode shape, damping ratio and kinetic energy of the structure can be estimated accurately. With these results, it may be concluded that the POD method can be applied to obtain accurate modal parameters from the wind-induced building responses.

  • PDF

Dynamics Analysis of a Multi-beam System Undergoing Overall Rigid Body Motion Employing Finite Element Method (유한요소법을 사용한 강체운동을 하는 다중보계의 동적 해석)

  • Choe, Sin;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2266-2273
    • /
    • 2000
  • Equations of motion of a multi-beam system undergoing overall rigid body motion are derived by employing finite element method. An orientation angle is employed to allow the arbitrary orientation o f the beam element. Modal coordinate reduction technique, which has been successfully utilized in the conventional linear modeling method, is employed for the present modeling method to reduce the computational effort. Different from the conventional linear modeling method, the present modeling method captures the motion-induced stiffness variations which are important for the dynamic analysis of structures undergoing overall rigid body motion. The numerical results are compared to those of a commercial program to verify the reliability of the present method.

Modal transformation tools in structural dynamics and wind engineering

  • Solari, Giovanni;Carassale, Luigi
    • Wind and Structures
    • /
    • v.3 no.4
    • /
    • pp.221-241
    • /
    • 2000
  • Structural dynamics usually applies modal transformation rules aimed at de-coupling and/or minimizing the equations of motion. Proper orthogonal decomposition provides mathematical and conceptual tools to define suitable transformed spaces where a multi-variate and/or multi-dimensional random process is represented as a linear combination of one-variate and one-dimensional uncorrelated processes. Double modal transformation is the joint application of modal analysis and proper orthogonal decomposition applied to the loading process. By adopting this method the structural response is expressed as a double series expansion in which structural and loading mode contributions are superimposed. The simultaneous use of the structural modal truncation, the loading modal truncation and the cross-modal orthogonality property leads to efficient solutions that take into account only a few structural and loading modes. In addition the physical mechanisms of the dynamic response are clarified and interpreted.

Noise and Vibration Analysis of a Flat Plate by using Modal Expansion Technique (모드 확장 기법을 이용한 평판의 진동.소음 해석)

  • 김관주;이봉노
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.654-662
    • /
    • 1998
  • To predict the radiating noise from the vibrating surface, it is required to know the velocity distribution of vibrating surface exactly as possible as it can. Although it can be obtained by finite element method, their accuracy is limited by theuncertainty of preparing input data such as material propoerties, damping, excitation, and the actual boundary conditions. Experimental values are accurate but are seldom available as many asthe data points compared to FEM mesh. Therefore, hybrid method of experiment and finite element method, called modal expansion technique, is investigated for the preparatin of accurate element method at specified frequencies and for the verification of this scheme, related experiment is performed. In high frequency range above 2000 Hz, piezo-electric material is used as an actuator.

  • PDF

Experimental Vibration Analysis for Viscoelastically Damped Circular Cylindrical Shell Using Nonlinear Least Square Method (비선형 최소제곱법을 이용한 점탄성 감쇠를 갖는 원통셀의 실험진동해석)

  • Min, Cheon-Hong;Park, Han-Il;Bae, Soo-Ryong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.41-46
    • /
    • 2008
  • It is a recent trend for advanced ships and submarines to incorporate composite structures with viscoelastically damping material. Much research has been done on curve-fitting techniquesto identify vibration characteristic parameters such as natural frequencies, modal damping ratios, and mode shapes of the composite structure. In this study, an advanced technique for accurately determining vibration characteristic of a circular cylindrical shell-attached viscoelastically damping material is used, based on a multi-degree of freedom (MDOF) curve-fitting method. First, an initial value is obtained by using a linear least square method. Next, using the initial value, the exact modal parameters of the composite circular cylindrical shell are obtained by using a nonlinear least square method. Results show computation time is greatly decreased and accurate results are obtained by the MDOF curve-fitting method.