• Title/Summary/Keyword: mobility constraint

Search Result 24, Processing Time 0.022 seconds

A study on the determination of the number of mobility cluster (적정 이동군집수 결정에 관한 연구)

  • ;Ham, Sung Hun
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.2
    • /
    • pp.120-131
    • /
    • 1995
  • To analyze mobility patterns, this study used three Constraint (Capability Constraint, Coupling Constraint, Authority Constraint) models which were proposed in Dr. Hagerstrand's Time-space theory. This paper shows that three constraint models have some effects upon mobility by age. In this study, Capability Constraint means a certain special constraint that is what we can't do during proceeding basic natural urges like sleep, fare, etc. Coupling constraint is a physical one. Each person limits the action range for staying on a special place in special time. For instance, students have to stay in school so that they have mobility constraints. Authority Constraint is a social one. When we use urban facilities or traffic, we may be controlled by mobility sphere by an agreement or a social position. It is social agreement that the opening hour of a store, the time table of mass-transportation and a social positional control that the personal income, the standard of education. In this study it has been in a process of determination of the cluster number that degree of influences a social constraint to mobility. Considering the mobility constraint of characteristics of space divides urban and rural, people in urban area have higher mobility rate than in rural area. Resuets of determination of the cluster, show similar mobility pattern. People in urban area are connected verity of mobility which related to urban space structures with determination of cluste-number. That is to say, mobility patterns can be changed by space charactcristics. Constraints by sex and age are also social constraints and they are influenced by mobility patterns. For instance, females at the age of twenties have similar mobility pattern to the same age male but they have sudden changes after thirty's age. Male entertains a similar pattern without restriction of age. That is to say, management by sex as a social constraint affects mobility. To establish more realistic traffie policy, mobility formation should be reflected to the space in a view of social-behavioral science. To embody this, some problems should be investigated as follows. 1. As a problem of methodology, if sufficient samples ensured, we could subdivide clusters and could open up a new method of analyzing the mobility clusters by using the neuro-network. 2. Extracting actions connected with mobility and finding life cycle which is classified by daily cluste-characteristics, suitable counterproposal could be presented to the traific policy.

  • PDF

Analysis of Mobility Constraint Factors of Fire Engines in Vulnerable Areas : A Case Study of Difficult-to-access Areas in Seoul (화재대응 취약지역에서의 소방특수차량 이동제약요인 분석 : 서울시의 진입곤란지역을 대상으로)

  • Yeoreum Yoon;Taeeun Kim;Minji Choi;Sungjoo Hwang
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.62-69
    • /
    • 2024
  • Ensuring swift on-site access to fire engines is crucial in preserving the golden time and minimizing damage. However, various mobility constraints in alleyways hinder the timely entry of fire engines to the fire scene, significantly impairing their initial response capabilities. Therefore, this study analyzed the significant mobility constraints of fire engines, focusing on Seoul, which has many old town areas. By leveraging survey responses from firefighting experts and actual observations, this study quantitatively assessed the frequency and severity of mobility constraint factors affecting the disaster responses of fire engines. Survey results revealed a consistent set of top five factors regarding the frequency and disturbance level, including illegally parked cars, narrow paths, motorcycles, poles, and awnings/banners. A comparison with actual road-view images showed notable consistency between the survey and observational results regarding the appearance frequency of mobility constraint factors in vulnerable areas in Seoul. Furthermore, the study emphasized the importance of tailored management strategies for each mobility constraint factor, considering its characteristics, such as dynamic or static. The findings of this study can serve as foundational data for creating more detailed fire safety maps and advancing technologies that monitor the mobility of fire engines through efficient vision-based inference using CCTVs in the future.

A Life History Analysis on the Housing Mobility of the Married Women (기혼 여성의 주거 이동에 대한 생애사 연구)

  • Shin, Soo-Young;Yoon, Chung-Sook
    • Journal of the Korean Home Economics Association
    • /
    • v.47 no.6
    • /
    • pp.79-90
    • /
    • 2009
  • The purpose of this study was to improve the understanding of housing experiences of the married women in Korean sociocultural context and to explore their housing mobility. The grounded theory was adopted in this qualitative study. Data were collected through in-depth interviews with the seventeen married women. The major categories found in the data are 1) the inducement of housing mobility, 2) social constraint and opportunity, 3) the strategy and resource of housing mobility, 4) the intervening conditions, and 5) self-evaluation of their own housing life history. People construct their housing life history toward home ownership. There are a few factors to induce housing mobility, and social constraints and opportunity have an effect on obtaining home ownership. They utilize the diverse strategy and resource to solve their housing matter. Through interview, it is founded that they evaluate their housing career in the light of their life through interview.

A Dynamic Analysis of Constrained Multibody Systems (구속된 다물체 시스템을 위한 동역학 해석론)

  • 이상호;한창수;서문석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2339-2348
    • /
    • 1994
  • The objective of this paper is to develop a solution method for the differential-algebraic equation(DAE) derived from constrained muti-body dynamic systems. Mechanical systems are often modeled as bodies and joints. Differential equations of motion are formulated for bodies. Since the bodies are connected by joint, the differential variables must satisfy the kinematic constraint equations that come from the joints. Difficulties are arised due to drift of the differential variables off the constraint equations. An optimization method is adopted to correct the drift of the differential variables. To demonstrate the efficiency of the proposed method a slider-crank mechanism is analyzed dynamically. Identical results are obtained as these from the commercial program DADS. Dynamic analysis of a High Mobility Multi-purpose Wheeled. Vehicle(HMMWV) is carried out to show the practicalism of the proposed method.

Derivation of Constraint Factors Affecting Passenger's In-Vehicle Activity of Urban Air Mobility's Personal Air Vehicle and Design Criteria According to the Level of Human Impact (도심항공모빌리티 비행체 PAV 탑승자 실내행위에 영향을 미치는 제약 요소 도출 및 인체 영향 수준에 따른 설계 기준)

  • Jin, Seok-Jun;Oh, Young-Hoon;Ju, Da Young
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.3-20
    • /
    • 2022
  • Recently, prior to the commercialization of urban air mobility (UAM), the importance of R&D for air transportation-related industries in urban areas has significantly increased. To create a UAM environment, research is being conducted on personal air vehicles (PAVs). They are key means of air transportation, but research on the physical factors influencing their passengers is relatively insufficient. In particular, because the PAV is expected to be used as a living space for the passengers, research on the effects of the physical elements generated in the PAV on the human body is essential to design an interior space that supports the in-vehicle activities of the passengers. Therefore, the purpose of this study is to derive the constraint factors that affect the human body due to the air navigation characteristics of the PAV and to understand the impact of these constraint factors on the bodies of the passengers performing in-vehicle activities. The results of this study indicate that when the PAV was operated at less than 4,000 ft, which is the operating standard, the constraint factors were noise, vibration, and motion sickness caused by low-frequency motion. These constraint factors affect in-vehicle activity; thus, the in-vehicle activities that can be performed in a PAV were derived using autonomous cars, airplanes, and PAV concept cases. Furthermore, considering the impact of the constraint factors and their levels on the human body, recommended constraint factor criteria to support in-vehicle activities were established. To reduce the level of impact of the constraint factors on the human body and to support in-vehicle activity, the seat's shape and built-in functions of the seat (vibration reduction function, temperature control, LED lighting, etc.) and external noise reduction using a directional speaker for each individual seat were recommended. Moreover, it was suggested that interior materials for noise and vibration reduction should be used in the design of the interior space. The contributions of this study are the determination of the constraint factors affecting the in-vehicle PAV activity and the confirmation of the level of impact of the factors on the human body; in the future, these findings can be used as basic data for suitable PAV interior design.

Biomechanical Characteristics of Cervical Spine After Total Disc Replacement (인공 추간판 치환술 후 경추의 생체역학적 특성)

  • Park, Won-Man;Joo, Jeung-Woo;Kim, Kyung-Soo;Lee, Ki-Seok;Kim, Yoon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.637-644
    • /
    • 2009
  • We have analyzed the biomechanical characteristics of cervical spine after total disc replacement using finite element analysis. A finite element model of C2-C7 spinal motion segment was developed and validated by other experimental studies. Two types of artificial discs, semi-constraint and un-constraint, were inserted at C6-C7 segments. Inferior plane of C7 vertebra was fixed and 1Nm of moment were applied on superior plane of C2 vertebra with 50N of compressive load along follower load direction. Mobility of the cervical spine in which each artificial disc inserted was higher than that of intact one in all loading conditions. Also, high mobility at the surgical level after total disc replacement could lead higher facet joint force and ligaments axial stresses. The results of present study could be used to evaluate surgical option and validate the biomechanical characteristics of the implant in total disc replacement in cervical spine.

Optimal Design of a Mobile Robot Based upon Mobility (이동로보트의 주행특성을 고려한 최적설계)

  • Jin, Tae-Seok;Lee, Jang-Myung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.6
    • /
    • pp.9-21
    • /
    • 2001
  • This paper defines the mobility and rotatability, and a desired mobility and rotatability that can be achieved by adjusting the distance between two wheels of a mobile robot dynamically. The radii of wheels are assumed to be constant in this paper. If a mobile robot has a fixed axis connecting the two wheels, it may not be able to avoid a sudden obstacle because of the constraint of mobility and rotatability. The focus of this paper is on the instant rotatability with high and stable mobility. That is, by dynamically changing the distance between the two wheels, the mobile robot could get the high rotatability instantly and high mobility with high stability. Supposed that the mobility and rotatability that are defined in this paper are supplied to the design of a mobile robot, it will suggest a theoretical basis on the optimal design of the mobile robot with a given route condition and its states. The experimental data support the validity of the aforementioned mobility and rotatability.

  • PDF

Dynamic Analysis of Multi-Robot System Forcing Closed Kinematic Chain (복수로봇 시스템의 동력학적 연구-대상물과 닫힌 체인을 형성할때의 문제-)

  • 유범상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1023-1032
    • /
    • 1995
  • The multiple cooperating robot system plays an important role in the research of modern manufacturing system as the emphasis of production automation is more on the side of flexibility than before. While the kinematic and dynamic analysis of a single robot is performed as an open-loop chain, the dynamic formulation of robot in a multiple cooperating robot system differs from that of a single robot when the multiple cooperating robots form a closed kinematic chain holding an object simultaneously. The object may be any type from a rigid body to a multi-joint linkage. The mobility of the system depends on the kinematic configuration of the closed kinematic chain formed by robots and object, which also decides the number of independent input parameters. Since the mobility is not the same as the number of robot joints, proper constraint condition is sought. The constraints may be such that : the number of active robot joints is kept the same as mobility, all robot joints are active and have interrelations between each joint forces/torques, two robots have master-slave relation, or so on. The dynamic formulation of system is obtained. The formulation is based on recursive dual-number screw-calculus Newton-Eulerian approach which has been used for single robot analysis. This new scheme is recursive and compact symbolically and may facilitate the consideration of the object in real time.

Dynamic Modeling and Analysis of a High Mobility Tracked Vehicle (고속 궤도차량의 동역학적 모델링 및 해석)

  • Lee, Byung-Hoon;Souh, Byung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1486-1493
    • /
    • 2006
  • This paper presents a dynamic model of a high mobility tracked vehicle composed of rigid bodies. Track is modeled as an extensible cable and the track tension between the sprocket and roller is calculated by the catenary equation. The ground force acting on a road wheel is calculated by the Bekker's pressure-sinkage relationship using the segmented wheel model. System equations of motion and constraint acceleration equations are derived in the joint coordinate space using the velocity transformation method.

A Software Development for the Dynamic Analysis of a High Mobility Tracked Vehicle (고속 궤도차량의 동역학 해석을 위한 소프트웨어 개발)

  • Lee, Byung-Hoon;Souh, Byung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.89-97
    • /
    • 2009
  • In this paper, a computer software for dynamic analysis of a high mobility tracked vehicle with pre/post processor is developed. Model of a tracked vehicle is composed of chassis, turret, mount, gun, and road-wheel assembly. Track is modeled as an extensible cable and the track tensions are applied on the wheels as external forces. The system equations of motion and constraint acceleration equations are derived in the joint coordinate space using the velocity transformation method. The pre and post processors are developed using the Visual C++.