• Title/Summary/Keyword: mobile station

Search Result 1,003, Processing Time 0.03 seconds

A Packet Forwarding Control Scheme for TCP Performance Improvement in Mobile Networks (모바일 네트워크에서 TCP 성능 향상을 위한 패킷 포워딩 제어 방안)

  • Hur, Kyeong;Eom, Doo-Seop;Lee, Seung-Hyun;Tchah, Kyun-Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4C
    • /
    • pp.353-364
    • /
    • 2002
  • To prevent the performance degradation of TCP due to packet loss in the smooth handoff by the route optimization extension of Mobile If protocol, a buffering of packets at a base station is needed. A buffering of packets at a base station recovers the packets dropped during the handoff by forwarding the buffered packets at the old base station to the mobile user. But, when the mobile user moves to a new foreign network which is connected to a congested router, the buffered packets forwarded by the old base station are dropped and the link utilization performance degraded due to increased congestion by the forwarded packets. In this paper, when the mobile user moves to a new foreign network which is connected to a congested router, Ive propose a packet forwarding control scheme required far the old base station to improve TCP performance in mobile networks. The old base station forwards or discards the buffered packets during handoff by proposed packet forwarding control scheme based on congestion states of RED(Random Early Detection) at the congested router. Simulation results slow that link utilization performance can be improved by applying proposed packet forwarding control scheme.

Uplink Power Control and Sub-channel Allocation depending on the location of Mobile Station in OFDMA system (OFDMA 시스템에서 단말기의 위치정보를 이용한 상향링크 전력제어 및 부채널 할당)

  • Kim, Dae-Ho;Kim, Whan-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.15-22
    • /
    • 2006
  • In OFDMA system, even if the number of allocated sub-channel in mobile station varies from one to the whole sub-channel as in base station, while because of mobile station's transmit power is lower than that of base station, therefore full loading range(FLR) constraint occurs where whole sub-channel can be used and the conventional open-loop power control scheme can not be used beyond FLR. We propose a new scheme that limits the maximum sub-channel allocation number and uses power concentration gain(PCG) depending on location of mobile station, which is based on ranging in OFDMA system. Simulation results show that the proposed scheme provides solutions for optimum utilization of radio resource depending on the location of mobile station and enables open-loop power control beyond FLR without extra hardware complexity.

A Performance Simulation for Call Capacity of Base Station in CDMA Mobile System (CDMA Mobile System의 Base Station호 처리 용량 성능 시뮬레이션)

  • Lee, Dong-Myeong;Jeon, Mun-Seok;Lee, Cheol-Hui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1253-1261
    • /
    • 1996
  • The base station (BS) of CDMA mobile system (CMS) provides mobile call services by controlling call processing functions. The call Processing part of the BS is divided into two components; the base station transceiver subsystem (BTS) and the base station controller (BSC). In this paper, we present the call capacity estimation of the BS about control signals and traffic data of calls by the simulation, and find the bottleneck points and problems which may occur in the BS. In order to estimate the call capacity, first we extract the major parameters for the modeling the BS. Second, we suggest the simulation model for the BS. Third, we estimate the simulation results by finding major objective factors such that the call blocking probability, the utilization ratio and the delay time in the traffic channel elements (TCEs), the BTS interconnection network (BIN)-COMA interconnection network (CIN) trunks, the transcoding channels and the CIN packet router.

  • PDF

The Analysis of Reducing Power Consumption and CO2 Emission in the Advanced Mobile Communication Base Station (다중 대역용 차세대 이동통신 기지국 시스템의 전력 및 탄소배출량 절감효과 분석)

  • Oh, Sung-Kon;An, Jun-O;Kim, Boo-Gyoun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.642-649
    • /
    • 2011
  • In this paper, we present the analysis of the characteristics of advanced mobile communication base station with multi-band about power loss, power efficiency and carbon reduction considering cable power loss. The advanced mobile base station system is installed on the outdoor for Antenna and RF part, and then the power loss is reduced because the fiber optic cable is used between RF part and baseband part. If the cable power loss is reduced by 5 dB replacing an entire the advanced base station systems, annual power consumption is reduced total 49,038 MWh in the CDMA 20W, WCDMA 30W, WiBro 10W systems. Furthermore the advanced base station system of annual $CO_2$ emission is 20,832 $tCO_2$ compare to 65,878 $tCO_2$. Therefore the advanced base system is confirmed considering green IT technology for the advanced mobile communication base station.

Analysis for Measured Results in EMF Strength Exposure Level under Base Station Environment for Mobile Communication (이동 통신용 기지국 환경에서 전자파 강도 노출량 측정 결과 분석)

  • Song, Hae-Zu;Kim, Soon-Young;Lee, Moon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.601-609
    • /
    • 2010
  • This paper measured EMF strength of the duty measurement radio station(77 station) and the non-duty measurement radio station(41 station) of mobile communication base station in Jeonbuk region. As the result of measurement, it generally reveals that EMF is highly low level compare to the human protection guideline. And It is regarded as level that the national people who live close to the mobile communication base station don't have to worry about electromagnetic wave. This paper provides comparative analyses categorized by the duty measurement station and the non-duty measurement station. The results reveals that the average value and the maximum value of the non-duty measurement station preferably was higher than all the duty measurement station. It is thought that the EMF exposure strength of the national people is caused by approach of station antenna rather than antenna power. Consequently this paper suggests that standard of the antenna power(exceed 30 W), standard of antenna height(exceed 10 m) specified by Radio Regulation Act enforcement ordinance, legal basis for mobile communication base station have to be changed.

Improving TCP Performance by Implicit Priority Packet Forwarding in Mobile IP based Networks with Packet Buffering (모바일 IP 패킷 버퍼링 방식에서 TCP 성능향상을 위한 암시적인 패킷 포워딩 우선권 보장 방안)

  • 허경;이승법;노재성;조성준;엄두섭;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5B
    • /
    • pp.500-511
    • /
    • 2003
  • To prevent performance degradation of TCP due to packet losses in the smooth handoff by the route optimization extension of Mobile IP protocol, a buffering of packets at a base station is needed. A buffering of packets at a base station recovers those packets dropped during handoff by forwarding buffered packets at the old base station to the mobile user. But, when the mobile user moves to a congested base station in a new foreign subnetwork, those buffered packets forwarded by the old base station are dropped and the wireless link utilization performance degrades due to increased congestion by those forwarded packets. In this paper, considering the case that a mobile user moves to a congested base station in a new foreign subnetwork, we propose an Implicit Priority Packet Forwarding to improve TCP performance in mobile networks. In the proposed scheme, the old base station marks a buffered packet as a priority packet during handoff. In addition, RED (Random Early Detection) at the new congested base station does not include priority packets in queue size and does not drop those packets randomly based on average queue size. Simulation results show that wireless link utilization performance of mobile hosts can be improved without modification to Mobile IP protocol by applying proposed Implicit Priority Packet Forwarding.

An Propagation Path Analysis for Optimal Position Selection of Microcell Base Station in the Mobile Communication System (이동통신 마이크로셀 기지국의 최적 위치 선정을 위한 전파경로 해석)

  • 노순국;박창균
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.7
    • /
    • pp.92-100
    • /
    • 1999
  • In the microcell mobile communication, we propose algorithms processing operational disposition to exactly analysis propagation environments from the base station to mobile stations. Algorithms are developed by the triangle analysis method can operate variable propagation paths and reflect numbers. For simulation, we suppose that mobile stations are located in the shadow region of the line of sight and the area of the non-line of sight sloping against the line of sight area at variable angles. By analyzing the results of simulation using proposed algorithms, we can be applied to the optimal position selection of the base station in the microcell mobile communication.

  • PDF

UHGA channel assignment can be applied under various environments (다양한 환경에 적용이 가능한 UHGA 채널 할당 방식)

  • Heo, Seo-Jung;Son, Dong-Cheol;Kim, Chang Suk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.487-493
    • /
    • 2013
  • As the spread of smart devices that service variety of content, limited mobile terminal channel assignment problem has intensified. In the channel assignment in mobile networks mobile switching center at the request belongs to each base station allocates the channel to the mobile station. This effectively allocate the limited channels of various methods have been proposed for, in this case a hybrid channel allocation using genetic algorithms UHGA (Universal Hybrid Channel Assignment using Genetic Algorithm) in rural areas or urban areas, such as universal network applied to a variety of environments that the efficiency is verified through simulation.

The remote maintenance system using RFID technology for the unmaned bicycle station (RFID 기술을 이용한 무인 자전거 스테이션 원격 유지 관리)

  • Jung, Sung Hoon;Kim, Sang Chul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.4
    • /
    • pp.47-55
    • /
    • 2011
  • In this paper, the management system for a bicycle station using 900 MHz RFID technology has been developed. Based on the several reasons such as environmental pollution, high oil prices, and the government's eco-friendly policies, a bicycle usage is increasing nowadays. Accordingly, a need for bicycle parking spaces has already been emerging and increasing around a bicycle station. But most of the bicycle parking system are operated by manually, and it causes somewhat inefficient. Therefore, this paper suggests an unmanned bicycle station using RFID technology. The proposed system is supported by the mobile applications that are operated in the smart phones, and which gives the real-time access to the information of bicycle station. The proposed system yields owners of bicycle owners the convenience and efficiency of the station management in order to maximize the function of the bicycle stations.

TCP Performance Analysis of Packet Buffering in Mobile IP based Networks (모바일 IP 네트워크에서 패킷 버퍼링 방식의 TCP 성능 분석)

  • 허경;노재성;조성준;엄두섭;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5B
    • /
    • pp.475-488
    • /
    • 2003
  • To prevent performance degradation of TCP due to packet losses in the smooth handoff by the route optimization extension of Mobile IP protocol, a buffering of packets at a base station is needed. A buffering of packets at a base station recovers those packets dropped during handoff by forwarding buffered packets at the old base station to the mobile user. But, when the mobile user moves to a congested base station in a new foreign subnetwork, those buffered packets forwarded by the old base station are dropped and TCP transmission performance of a mobile user in the congested base station degrades due to increased congestion by those forwarded burst packets. In this paper, considering the general case that a mobile user moves to a congested base station, we analyze the influence of packet buffering on TCP performance according to handoff arrival distribution for Drop-tail and RED (Random Early Detection) buffer management schemes. Simulation results show that RED scheme can reduce the congestion increased by those forwarded burst packets comparing Drop-Tail, but RED scheme cannot avoid Global Synchronization due to forwarded burst packets by the old base station and new buffer management scheme to avoid it is needed in Mobile IP based networks.