현대인은 스마트폰과 매우 밀접한 관계를 가지고 있으며 이로 인한 수 많은 보안 위협에 노출되어 있다. 실제로 해커들은 스마트폰에 악성 프로그램을 은밀하게 설치하여 장치 이용 제한 및 개인정보 유출 등의 보안 위협을 야기하고 있다. 그리고 그러한 악성 프로그램은 일반적인 프로그램과 다르게 필요 이상의 권한을 요구한다. 본 논문에서는 이 같은 문제를 바탕으로 사용되는 안드로이드 기반 앱들이 요구하는 권한 데이터를 이용하여 주성분 분석(Principle Component Analysis:PCA)과 확률적 K-인접 이웃(Probabilistic K-Nearest Neighbor:PKNN) 방식을 사용하여 효과적으로 악성 프로그램과 일반 프로그램을 분류하고자 한다. 이뿐 아니라 이를 k-묶음 교차 검증(K-fold Croos Validation)을 통해 PKNN의 정확도를 측정하였다. 그리고 일반적으로 사용되는 K-인접 이웃(K-Nearest Neighbor:KNN) 방식과 비교하여, KNN이 분류하기 힘든 부분을 확률적으로 해결하는 PKNN방법을 제안한다. 최종적으로 제안한 방식을 최적화하는 ${\kappa}$와 ${\beta}$ 파라미터를 구하는 것을 목표로 한다. 본 논문에서 사용된 악성 앱 샘플은 Contagio에 요청하여 이용하였다.
Symantec의 인터넷 보안위협 보고서(2018)에 따르면 크립토재킹, 랜섬웨어, 모바일 등 인터넷 보안위협이 급증하고 있으며 다각화되고 있다고 한다. 이는 멀웨어(Malware) 탐지기술이 암호화, 난독화 등의 문제에 따른 질적 성능향상 뿐만 아니라 다양한 멀웨어의 탐지 등 범용성을 요구함을 의미한다. 멀웨어 탐지에 있어 범용성을 달성하기 위해서는 탐지알고리즘에 소모되는 컴퓨팅 파워, 탐지 알고리즘의 성능 등의 측면에서의 개선 및 최적화가 이루어져야 한다. 본고에서는 최근 지능화, 다각화 되는 멀웨어를 효과적으로 탐지하기 위하여 CNN(Convolutional Neural Network)을 활용한 멀웨어 탐지 기법인, stream order(SO)-CNN과 incremental coordinate(IC)-CNN을 제안한다. 제안기법은 멀웨어 바이너리 파일들을 이미지화 한다. 이미지화 된 멀웨어 바이너리는 GoogLeNet을 통해 학습되어 딥러닝 모델을 형성하고 악성코드를 탐지 및 분류한다. 제안기법은 기존 방법에 비해 우수한 성능을 보인다.
스마트폰의 폭발적인 증가와 효율성으로 개방형 모바일 운영체제인 안드로이드의 활용도가 점차 증가하고 있고, 모바일 기기, 가전제품의 운영체제, IoT 관련 제품들과 더불어 메카트로닉스의 분야에도 활용될 수 있는 가용성과 안정성이 증명되고 있다. 하지만, 사용성이 증가하면 증가할수록 안드로이드 기반의 악성코드 역시 기하급수적으로 증가하고 있는 추세이다. 일반 PC와 다르게 모바일 제품에 악성코드가 유일될 경우, 모바일 기기가 Lock됨으로 사용할 수 없고, 불필요한 과금과 더불어 수많은 개인의 연락처가 외부로 유출될 수 있으며, 모바일 기기를 활용한 금융서비스를 통해 막대한 손실을 볼 수 있는 문제점이 있다. 따라서, 우리는 이 문제를 해결하기 위하여 유해한 악성 파일을 실시간으로 탐지 및 삭제할 수 있는 방법을 제시하였다. 또한 이 논문에서는 안드로이드 기반의 어플리케이션 설치 과정 및 시그니처 기반 악성코드 탐지방법을 통해 보다 효과적인 방법으로 악성코드를 실시간 감시하고 삭제할 수 있는 기법을 설계하였다. 우리가 제안하고 설계한 방법은 모바일 환경과 같이 제한적인 리소스 환경에서 악성코드를 효과적으로 탐지할 수 있다.
Yang, Qing;Wang, Xiaoliang;Zheng, Jing;Ge, Wenqi;Bai, Ming;Jiang, Frank
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권6호
/
pp.2188-2203
/
2021
With the rapid development of mobile Internet, smart phones have been widely popularized, among which Android platform dominates. Due to it is open source, malware on the Android platform is rampant. In order to improve the efficiency of malware detection, this paper proposes deep learning Android malicious detection system based on behavior features. First of all, the detection system adopts the static analysis method to extract different types of behavior features from Android applications, and extract sensitive behavior features through Term frequency-inverse Document Frequency algorithm for each extracted behavior feature to construct detection features through unified abstract expression. Secondly, Long Short-Term Memory neural network model is established to select and learn from the extracted attributes and the learned attributes are used to detect Android malicious applications, Analysis and further optimization of the application behavior parameters, so as to build a deep learning Android malicious detection method based on feature analysis. We use different types of features to evaluate our method and compare it with various machine learning-based methods. Study shows that it outperforms most existing machine learning based approaches and detects 95.31% of the malware.
An antivirus is a widely used solution for detecting malicious softwares in client devices. The performance of antivirus solutions in the mobile client environment is critical due to its resource constrains. Many solutions light-weighting client's overhead in the mobile client environment have been developed. However, most solutions require platform modifications or software installations and it decreases their realizations in practice. In this paper, we propose a solution detecting malwares on networks using the Software Defined Network (SDN). Our main goal is designing a solution detecting malwares of mobile client without involving the client into the work. We contribute to provide a solution that does not require client-side installations or modifications and so is easily applicable in practice.
최근 전 세계적으로 스마트폰의 사용이 급증하고 있으며, 국내의 경우 스마트폰 가입자 수는 약 2400만명으로 전체 이통사의 가입자중 47.7%가 스마트폰을 사용하고 있다. 스마트폰의 경우 보안에 대해 취약점을 가지고 있으며, 스마트폰을 이용한 보안관련 사고피해가 해가 갈수록 증가하고 있다. 그러나 기존의 방식은 사전 대책이 아닌 대부분 사후대책으로써 전문가의 경우를 제외하면 피해를 입은 뒤에 그 피해가 발생한 악성코드의 분석이 이루어지고 있다. 이에 따라 본 논문에서는 가상화 기술을 적용한 모바일 기반의 악성코드분석 시스템을 구현하고 이를 통하여 행위분석을 하도록 설계한다. 가상화는 컴퓨터 리소스의 물리적인 특징을 추상화하여 게스트에게 논리적인 리소스를 제공하는 기술이다. 이러한 가상화 기술은 클라우드 컴퓨팅 서비스와 접목시켜 서버, 네트워크, 스토리지등 컴퓨팅 자원을 탄력적으로 제공함으로 자원의 효율성을 높이고 있다. 아울러 사용자 관점에서 사전에 보안사고를 대비할 수 있는 시스템을 제시한다.
모바일 악성 앱이 급증하고 있으며, 전 세계 모바일 OS 시장의 대부분을 차지하고 있는 안드로이드가 모바일 사이버 보안 위협의 주요 대상이 되고 있다. 따라서 빠르게 진화하는 악성 앱에 대응하기 위해 인공지능 구현기술 중 하나인 기계학습을 활용한 악성 앱 탐지 기법의 필요성이 대두되고 있다. 본 논문은 악성 앱의 탐지성능을 향상할 수 있는 특성 선택 및 특성 추출을 이용한 특성 선별 방법을 제안하였다. 특성 선별 과정에서 특성 개수에 따라 탐지 성능이 향상되었으며, 권한보다 API가 상대적으로 좋은 탐지 성능을 보였고, 두 특성을 조합하면 평균 93% 이상의 높은 탐지 정밀도를 보여 적절한 특성의 조합이 탐지 성능을 높일 수 있음을 확인하였다.
앱(App) 또는 어플리케이션이라고 부르는 응용 프로그램은 스마트폰이나 스마트TV와 같은 스마트 기기에서 사용되고 있다. 당연하게도 앱에도 악성코드가 있는데, 악성코드의 유무에 따라 정상앱과 악성앱으로 나눌 수 있다. 악성코드는 많고 종류가 다양하기 때문에 사람이 직접 탐지하기 어렵다는 단점이 있어 AI를 활용하여 악성앱을 탐지하는 방안을 제안한다. 기존 방법에서는 악성앱에서 Feature를 추출하여 악성앱을 탐지하는 방법이 대부분이었다. 하지만 종류와 수가 기하급수적으로 늘어 일일이 탐지할 수도 없는 상황이다. 따라서 기존 대부분의 악성앱에서 Feature을 추출하여 악성앱을 탐지하는 방안 외에 두 가지를 더 제안하려 한다. 첫 번째 방안은 기존 악성앱 학습을 하여 악성앱을 탐지하는 방법과 는 반대로 정상앱을 공부하여 Feature를 추출하여 학습한 후 정상에서 거리가 먼, 다시 말해 비정상(악성앱)을 찾는 것이다. 두 번째 제안하는 방안은 기존 방안과 첫 번째로 제안한 방안을 결합한 '앙상블 기법'이다. 이 두 기법은 향후 앱 환경에서 활용될 수 있도록 연구를 진행할 필요가 있다.
현재까지 내부 네트워크에 접근하는 단말의 무결성을 검증하기 위한 방안으로 네트워크 접근제어 시스템 NAC(Network Access Control), 백신, 망분리, MDM(Mobile Device Management) 등 다양한 방법들을 이용하여 내부 네트워크의 자산을 보호하고자 하였다. 그러나 기존의 접근제어 시스템에서 사용하는 정책은 획일화 되어 사용자에게 적용되고 있고, 또한 APT(Advance Persistent Threat) 대응 솔루션, 방화벽, 백신 등의 보안 솔루션은 단말이 내부 네트워크에 접근한 이후에 이상 트래픽 등이 발생 시 이를 감지하고 처리하는 형태이므로 근본적으로 무결성 검사를 수행한 이후에 내부 네트워크에 접근하는 등의 방안이 필요하다. 따라서 본 논문에서는 악성코드에 감염된 단말이 내부 네트워크에 접속하기 이전에 이를 검증하고 조치하는 방안에 대한 보안네트워크 설계를 제시하고자 한다.
IoT와 모바일 기기 사용이 급격히 증가하면서 IoT 기기를 대상으로 한 사이버 범죄 역시 늘어나고 있다. IoT 기기 중 Wireless AP(Access Point)를 사용할 경우 자체 보안 취약성으로 인해 패킷이 외부로 노출되거나 Bot과 같은 악성코드에 손쉽게 감염되어 DDoS 공격 트래픽을 유발하는 등의 문제점이 발견되고 있다. 이에 본 연구에서는 최근 급증하는 IoT 기기 대상 사이버 공격에 능동적으로 대응하기 위해 공공분야 시장 점유율이 높은 IoT 기기를 대상으로 침해사고 흔적을 수집하고, 침해사고 분석 데이터의 유효성을 향상시키기 위한 방법을 제시하였다. 구체적으로, 샘플 IoT 악성코드를 대상으로 동작 재현을 통해 취약점 발생 요인을 파악한 후 침해 시스템 내 주요 침해사고 흔적 데이터를 획득하고 분석하는 방법을 제시하였다. 이에 따라 대단위 IoT 기기를 대상으로 한 침해사고 발생시 이에 효율적으로 대응할 수 있는 체계를 구축할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.