• Title/Summary/Keyword: mixture of two fluids

Search Result 37, Processing Time 0.02 seconds

Computational Validation of Supersonic Combustion Phenomena associated with Hypersonic Propulsion (극초음속 추진과 관련된 초음속 연소 현상의 수치적 검증)

  • Choi Jeong-Yeol;Jeung In-Seuck;Yoon Youngbin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.117-122
    • /
    • 1998
  • A numerical study is carried out to investigate the transient process of combustion phenomena associated with hypersonic propulsion devices. Reynolds averaged Navier-Stokes equations for reactive flows are used as governing equations with a detailed chemistry mechanism of hydrogen-air mixture and two-equation SST turbulence modeling. The governing equations are discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit time accurate method. At first, oscillating shock-induced combustion is analyzed and the comparison with experimental result gives the validity of present computational modeling. Secondly, the model ram accelerator experiment was simulated and the results show the detailed transient combustion mechanisms. Thirdly, the evolution of oblique detonation wave is simulated and the result shows transient and final steady state behavior at off-stability condition. Finally, shock wave/boundary layer interaction in combustible mixture is studied and the criterion of boundary layer flame and oblique detonation wave is identified.

  • PDF

A STUDY ABOUT THE EFFECT OF MODEL CONSTANTS OF TWO CAVITATION MODELS ON CAVITY LENGTH (서로 다른 두 개의 공동모델의 모델 상수값이 공동의 길이에 미치는 영향연구)

  • Jin, M.S.;Ha, C.T.;Park, W.G.;Jung, C.M.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.25-32
    • /
    • 2012
  • This work was devoted to compare two different cavitation models to study the dependency of model constants. The cavitation model of Merkle et al.(2006) and Kunz et al.(2000) were used for the present computational study. The cavitation models were coupled with the incompressible unsteady Reynolds-Averaged Navier-Stokes solver to indicate the vaporization and condensation processes. For this purpose, a preconditioning method was added as the pseudo-time term to solve the unsteady stiffness problems. For the validation of the numerical simulation, the computation was performed for the cavitating flow in a converging-diverging channel. The present results show that Merkle's cavitation model is independent to the model constants, and the higher numerical accuracy over Kunz's cavitation model.

Flow Pattern and Pressure Drop of Pure Refrigerants and Their Mixture in Horizontal Tube

  • Lim, Tae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2289-2295
    • /
    • 2005
  • Two-Phase flow pattern and pressure drop data were obtained for pure refrigerants R134a and R123 and their mixtures as test fluids in a horizontal tube. The flow pattern is observed through tubular sight glasses located at inlet and outlet of the test section. The flow map of Baker developed for air-water two-phase flow at atmospheric pressure failed to predict the observed flow patterns at the higher value of the mass velocity used in the present study. The map of Kattan et al. predicted the data well over the entire region of mass velocity selected in the present study. The measured pressure drop increased with an increase in vapor quality and mass velocity. A new two-phase multiplier was developed from a dimensional analysis of the frictional pressure drop data measured in the present experiment. This new multiplier was found successfully to correlate the frictional pressure drop.

A High Resolution Scheme for Cavitating Flow

  • Shin B. R.;Oh S. J.;Obayashi S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.169-177
    • /
    • 2005
  • A high resolution scheme for solving gas-liquid two-phase flows with cavitation is described. This scheme uses the curvilinear coordinate grid and solves the density based momentum equations for mixture of gas-liquid medium with a preconditioning method to treat both compressible and incompressible flow characteristics. The present preconditioned method is based on the Runge-Kutta explicit finite-difference scheme, and is improved by using the diagonalization, the flux difference splitting and the MUSCL-TVD schemes to save computational effort and to increase stability and resolvability, especially at gas-liquid contact surfaces. A homogeneous equilibrium cavitation model is used to treat the gas-liquid two-phase medium in cavitating flow as a locally homogeneous pseudo-single-phase medium. Therefore, it is easy to solve cavitating flow, including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Some numerical results obtained by the present scheme are shown.

  • PDF

External Condensation Heat Transfer Coefficients of HFC32/HFC152a Mixtures on Enhanced Tubes (열전달 촉진관에서 HFC32/HFC152a 혼합냉매의 외부 응축열전달계수)

  • Lee, Yohan;Kang, Donggyu;Kim, Hyeon-Ju;Lee, Ho-Saeng;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.315-321
    • /
    • 2014
  • In this study, external condensation heat transfer coefficients (HTCs) of two non-azeotropic refrigerant mixtures of HFC32/HFC152a at various compositions were measured on both 26 fpi low-fin and Turbo-C enhanced tubes, of 19.0 mm outside diameter. All data were taken at the vapor temperature of $39^{\circ}C$, with a wall subcooling of 3~8 K. Test results showed that the HTCs of the tested mixtures on the enhanced tubes were much lower than the ideal values calculated by mass fraction weighting of the pure component HTCs. Also, the reduction of HTCs due to the diffusion vapor film was much larger than that of a plain tube. Unlike HTCs of pure fluids, HTCs of the mixtures measured on enhanced tubes increased, as the wall subcooling increased, which was due to the sudden break-up of the vapor diffusion film with an increase in wall subcooling. Finally, the heat transfer enhancement ratios for mixtures were found to be much lower, than those of pure fluids.

NUMERICAL ANALYSIS OF CAVITATION FLOW AROUND OGIVE-CYLINDER AND VENTURI (Ogive-Cylinder 주위와 Venturi에서의 캐비테이션 전산 유동해석)

  • Lee, J.C.;Ahn, B.K.;Kim, D.H.;Kim, C.K.;Park, W.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.130-133
    • /
    • 2007
  • A two-phase method in CFD has been developed and is applied to model the cavitation flow. The governing equation system is two-phase Navier-Stokes equation, comprised of the mixture mass, momentum and liquid-phase mass equation. It employs an implicite, dual time, preconditioned algorithm using finite difference scheme in curvilineal coordinates and Chien ${\kappa}-{\varepsilon}$ turbulence equation. The experimental cavitating flows around ogive-cylinder and venturi type objects are employed to test the solver. To prove the capabilities of the solver, several three-dimentional examples are presented.

  • PDF

CFD ANALYSIS ON THE CHARACTERISTICS FOR FLOCCULATORS OF VERTICAL PADDLE AND HYDRO-FOIL TYPE (수직 패들형 및 하이드로 포일형 응집기 특성의 전산유체역학 해석)

  • Shin, J.H.;Chang, S.M.;Cho, Y.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.24-30
    • /
    • 2016
  • In the water purification plant, the mixture of water and chemical from the mixing basin enters the flocculation basin. The rotating flocculators are generally used for the efficient flocculation of dregs. In this paper, the performance of flocculators of a vertical paddle type, widely used in the typical flocculation basins, and a hydro-foil type, recently disseminated in the field, are compared with each other by use of the numerical method. Also the characteristics and the efficiency are analyzed with CFD techniques. The strain rate and the eddy viscosity are compared for two types to predict the mixing efficiency, and the maximum speed and its location are pursued from the computed data. The hydrofoil type shows that the eddy viscosity is enhanced 1.66 to 3.03 times larger than that of vertical paddle type, and also produced 1.87 to 1.95 times larger flocs for each stage. However, the rapid rotation of hydrofoil may chop the floc to small size due to the higher turbulence intensity. From the result of computation, the strong and weak points of each type have been analyzed for the decision making.

COMPUTATIONAL ASSESSEMENT OF OPTIMAL FLOW RATE FOR STABLE FLOW IN A VERTICAL ROTATING DISk CHEMICAL VAPOR DEPOSITION REACTOR (회전식 화학증착 장치 내부의 유동해석을 통한 최적 유량 평가)

  • Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.86-93
    • /
    • 2012
  • A numerical investigation is conducted to search for the optimal flow rate for a rotating-disk chemical vapor decomposition reactor operating at a high temperature and a low pressure. The flow of a gas mixture supplied into the reactor is modeled by a laminar flow of an ideal gas obeying the kinetic theory. The axisymmetric two-dimensional flow in the reactor is simulated by employing a CFD package FLUENT. With operating pressure and temperature fixed, numerical computations are performed by varying rotation rate and flow rate. Examination of the structures of flow and thermal fields leads to a flow regime diagram illustrating that there are a stable plug-like flow regime and a few unfavorable flow regimes induced by mass unbalance or buoyancy. The criterion for sustaining a plug-like flow regime is discussed based on a theoretical scaling argument. Interpretation of the flow regime map suggests that a favorable flow is attainable with a minimum flow rate at the smallest rotation rate guaranteeing the dominance of rotation effects over buoyancy.

Measurement of the Shear Rate-Dependent Thermal Conductivity for Suspension with Microparticles (미립자를 포함한 현탁액의 전단율에 의존적인 열전도율 측정)

  • Lee, Sung-Hyuk;Shin, Sehyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1141-1151
    • /
    • 1998
  • An effective thermal conductivity measurement for suspensions of microparticles in oil mixture is conducted in order to evaluate the shear rate-dependence of the thermal conductivity of suspensions. Measurements are made for rotating Couette flows between two concentric cylinders. The rotating outer cylinder is immersed into a constant temperature water bath while the stationary inner cylinder is subject to a uniform heat fluff. Test fluids are made to be homogeneous suspensions, in which neutrally buoyant microparticles ($d=25{\sim}300{\mu}m$) are uniformly dispersed. The present measurements show strong shear-rate dependent thermal conductivities for the suspensions, which are higher than those at zero shear rate. The shear rate dependent thermal conductivity increases with the particle size and volume concentration.4 new model for shear rate-dependent thermal conductivity of microparticle suspensions is proposed; the correlation covers from zero shear rate value to asymptotic plateau value at moderately high shear rates.

Cavitation Noise Prediction: Direct numerical simulation and Modeling (직접 수치 모사를 통한 캐비테이션 소음 예측 및 모델링)

  • Seo, Jung-Hee;Moon, Young-J.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2929-2934
    • /
    • 2007
  • Prediction methods for cavitation noise are presented. At first, direct numerical simulation of cavitating flow noise has been performed, and acoustic analogy equation based on the cavitation noise modeling is derived. For the direct numerical simulation, a density based homogenous equilibrium model is employed to simulate cavitating two-phase flow and the governing equations are solved with high-order numerical schemes to resolve cavitation noise. The compressible Navier-Stokes equations for mixture fluids are discretized with a sixth-order central compact scheme, and the steep gradient of flow variables and supersonic regions are treated with the selective spatial filtering technique. The direct simulation of cavitating flow noise is performed for a 2D circular cylinder at cavitation number 0.7 and 1. The far-field noise is also predicted with the derived analogy equation. Noise spectrum predicted with the equation is well compared with the result of direct numerical simulation and also agree well with the theory.

  • PDF