• 제목/요약/키워드: mixed-mode crack

검색결과 207건 처리시간 0.022초

직접측정법을 이용한 혼합모드 하중 하에서 피로균열의 닫힘과 전파거동 (Fatigue Crack Closure and Propagation Behavior Under Mixed-Mode Loading Observed by the Direct Measuring Method)

  • 송삼홍;서기정;이정무
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.152-158
    • /
    • 2005
  • The stress conditions acting on the practical structure are complex, and thus most cracks existing in the practical structures are under mixed-mode loading conditions. The effect of shear load component of mixed-mode loading acts more greatly in the stage of crack initiation and initial propagation than crack propagation stage. Hence, research on the behavior in the stage of crack initiation and initial propagation need to be examined in order to evaluate behavior of mixed-mode fatigue cracks. In this study, the crack tip displacement(CTD) was measured by using the direct measuring method(DMM). We examined the behavior at crack tip by determining crack opening load$(P_{op})$. From the test results, the propagation behavior of mixed-mode fatigue cracks was evaluated by considering mixed-mode crack closure. Also, we examined the characteristic of crack propagation under mixed-mode loading with crack propagation direction.

혼합모드(I+II)에서 피로균열진전에 미치는 응력비의 영향 (Effect of Stress Ratio on Fatigue Crack Growth in Mixed Mode(I+II))

  • 공병채;최명수;권현규;최성대
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.90-96
    • /
    • 2009
  • The loading condition of actual construction works is complex. The shear effect of mixed-mode load component are crack propagation mechanism in step larger than the crack initial mechanism. Therefore, in this study received a mixed-mode loading on fatigue crack stress ratio on crack propagation path and speed of progress to learn whether stress affects crack propagation. ${\Delta}$ P a constant state of fatigue tests in Mode I, II give the same stress ratio, frequency 10Hz, sinusoidal waveform was used. A lower stress ratio fatigue crack propagation angle is small. This is less affected by the Mode II. Therefore, a mixed-mode fatigue crack propagation is to progress by the Mode. Stress ratio in a mixed mode crack in the path of progress and found a lot of impact.

  • PDF

혼합모드 하중 하에서의 균열성장 중 피로파단면 마찰과 균열닫힘효과의 상호관계 (The Correlation between Fatigue Fracture Crack Surface Friction and Crack Closure Effect in Crack Growth under Mixed-mode loading)

  • 서기정;송삼홍;이정무
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.214-219
    • /
    • 2004
  • Crack tip behavior of single mode loading condition(mode I)depend on tensile loading component but one of mixed mode loading condition(mode I+II) have influenced on shear loading component like the practical structure. Because crack closure is caused by shear loading component under mixed-mode loading a research on the behavior in the stage of crack initiation and propagation require to be evaluate about crack closure effect by fatigue crack surface friction. For that reasion we examined the behavior at the crack tip by direct measuring method. Measured behavior at the crack tip was analyzed through vector crack tip displacement. As a result, crack propafation equation was corrected by considering with crack closure effect. In addition we compared fatigue fracture crack surface and crack closure level.

  • PDF

파면거칠기 유도 균열닫힘에 의한 혼합모드 피로균열의 전파거동 및 파면에 대한 평가 (Assessment for Propagation Behavior and Fracture Surface of Mixed-mode Fatigue Crack by Fracture Surface-Roughness Induced Crack Closure)

  • 서기정;이정무
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.432-440
    • /
    • 2007
  • In this study, we have investigated the closure behavior of fatigue cracks in SAPH440 steel plates under a mixed-mode I+II loading. A crack image capturing system as a direct measuring method was used to measure the closure levels at a crack tip. The crack closure levels in the fluctuation and stable sections were increased with the increase of the mode mixture ratio. The mode mixture ratio independent fatigue crack propagation rates equation was calculated by considering mixed-mode crack closure levels. The equation was examined according to the application method of crack opening ratio. The fracture surface analysis by C-scan method was also performed in order to investigate the closure mechanism and propagation mode of crack under the mixed-mode I+II loading. The crack closure under the mixed mode I+II is confirmed as a surface roughness closure by the quantitative analysis of fracture surface using the proposed surface roughness parameter.

단일 및 혼합모드하에서 304스테인리스강의 피로균열 진전속도와 방향특성 (Fatigue Crack Growth Rates and Directions in STS304 under Mode I and Mixed Mode)

  • 권종완;양현태
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.102-109
    • /
    • 2002
  • The fatigue crack growth under mixed mode condition has been discussed within the scope of linear fracture mechanics such as maximum tangential stress, maximum tangential principal stress and minimum strain energy density. The purpose of this study is to investigate the characteristics of fatigue test crack growth in 304 stainless steel under mixed node. The fatigue test results carried out by using inclined pre-crack specimens was compared to both of the theoretical predictions of the criteria, maximum tangential stress and stain energy density. As difference from theoretical analysis, the transition region from mixed mode to mode I appeared in the fatigue test. There is deep relationship between the angle of slanted pre-crack and transition. Therefore, as applying the different stress intensity factor to each node I+II and mode I, the directions and rates of fatigue crack growth are evaluated more accurately under mixed mode.

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.

혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동 (Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length)

  • 정의효
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

임계 경사각을 고려한 기계적 체결부 균열의 혼합모드 피로균열성장 거동 (Mixed-Mode Fatigue Crack Growth Behavior of Cracks in Mechanical Joints Considering Critical Inclined Angle)

  • 허성필;양원호;정기현;류명해
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.187-192
    • /
    • 2001
  • Cracks in mechanical joints is generally under mixed-mode and there is the critical inclined angle at which mode I stress intensity factor becomes maximum. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed for horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using mode I and mode II stress intensity factors obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.

  • PDF

혼합모드 하중에서의 피로균열 전파거동 (Fatigue Crack Propagation Behavior under Mixed Mode Loading)

  • 송삼홍;이정무;최병호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.481-484
    • /
    • 2000
  • Practical structures are subject not only to tension but also to shear and torsional loading. Even under uniaxial loading, when the load is not perpendicular to the crack plane, mixed mode crack can occur. Hence, it is necessary to evaluate the fatigue behavior under mixed mode loading. In this study, the propagation behavior of the fatigue crack of the STS304 steels under mixed mode loading condition was investigated. The mode I and II stress intensity factors of CTS specimen were calculated using elastic finite element method with experimental results. The fatigue crack propagation under mixed mode was evaluated by the effective stress intensity factor proposed by Tanaka.

  • PDF

원공 결함을 갖는 CTS 시험편의 혼합모드 하중 하에서의 피로균열 전파거동 (Fatigue Crack Propagation Behavior in CTS Specimen Under Mixed-Mode Loading with Hole Defefects)

  • 송삼홍;신승만;이정무;서기정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.137-142
    • /
    • 2003
  • In this study, the propagation behavior of fatigue crack effected hole defects was investigated under mixed-mode I+II loading. To create mixed-mode stress field at crack tip, the compact tension shear (CTS) specimen and loading device were used in this tests. The propagation experiments of fatigue crack were performed by changing of the loading application angle(${\phi}$) and the distance(L) estimated from pre-crack tip to hole center located side by side by side with a pre-crack. As L changes, the variation for propagation aspect of fatigue crack, fatigue life and crack propagation rate were examined under mixed-mode loading. Under mixed-mode loading, the propagation rate of fatigue crack increased while the propagation direction changed dramatically because of the interference of hole defects.

  • PDF