• Title/Summary/Keyword: mixed pixel analysis

Search Result 24, Processing Time 0.033 seconds

SHADOW EXTRACTION FROM ASTER IMAGE USING MIXED PIXEL ANALYSIS

  • Kikuchi, Yuki;Takeshi, Miyata;Masataka, Takagi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.727-731
    • /
    • 2003
  • ASTER image has some advantages for classification such as 15 spectral bands and 15m ${\sim}$ 90m spatial resolution. However, in the classification using general remote sensing image, shadow areas are often classified into water area. It is very difficult to divide shadow and water. Because reflectance characteristics of water is similar to characteristics of shadow. Many land cover items are consisted in one pixel which is 15m spatial resolution. Nowadays, very high resolution satellite image (IKONOS, Quick Bird) and Digital Surface Model (DSM) by air borne laser scanner can also be used. In this study, mixed pixel analysis of ASTER image has carried out using IKONOS image and DSM. For mixed pixel analysis, high accurated geometric correction was required. Image matching method was applied for generating GCP datasets. IKONOS image was rectified by affine transform. After that, one pixel in ASTER image should be compared with corresponded 15×15 pixel in IKONOS image. Then, training dataset were generated for mixed pixel analysis using visual interpretation of IKONOS image. Finally, classification will be carried out based on Linear Mixture Model. Shadow extraction might be succeeded by the classification. The extracted shadow area was validated using shadow image which generated from 1m${\sim}$2m spatial resolution DSM. The result showed 17.2% error was occurred in mixed pixel. It might be limitation of ASTER image for shadow extraction because of 8bit quantization data.

  • PDF

A Technique for Mixed Pixel Extraction by Canonical Vector Analysis (정준벡터분석에 의한 혼합화소 해석기법에 관한 연구)

  • 박민호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.75-84
    • /
    • 1998
  • To achieve more accurate information from satellite image data, a research on a technique for mixed pixel ex-traction has been produced. The mixed pixels with only two land covers have been experimented. By analyzing canonical vector in canonical correlation classification, the mixed pixels have been classified. The ratio of the two canonical weighted values-the elements of canonical vector have been used as a threshold to discriminate mixed pixels. In case of the classification for the mixed pixels of bridge and water class in TM data before or after the 1st of September, the threshold for the optimal classification of the mixed pixels is 4.0. That is, if the ratio of the two canonical weighted values is less than 4.0, the pixel is a mixed pixel. Also, using the distribution of canonical weighted values, the constitution percentages of land covers within one mixed pixel can be approximately deducted. The accuracy of mixed pixel extraction for experimental area is 90% and quite acceptable. Conclusively, a technique for mixed pixel extraction by canonical vector analysis is effective.

  • PDF

An Analysis of Mixed Pixel in the Remote Sensing Image Data (위성탐사 이미지에서 혼합화소의 해석에 관한 연구)

  • Kim, Jin-Il;Park, Min-Ho;Kim, Sung-Chun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.2 s.6
    • /
    • pp.91-100
    • /
    • 1995
  • The aim of this study is to classify mixed information in a pixel of a remote sensing image data (in the case of SPOT HRV's band $1{\sim}3,\;20m{\times}20m$). First, the loss of information and the uncertainty of mixed pixel are examined. To solve the problems, methods by fuzzy sigmoid function and back-propagation neural network are suggested. Then. the study simulates and comparatively analyzes the two methods.

  • PDF

Separation of Blind Signals Using Robust ICA Based-on Neural Networks (신경망 기반 Robust ICA에 의한 은닉신호의 분리)

  • Cho, Yong-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • This paper proposes a separation of mixed signals by using the robust independent component analysis(RICA) based on neural networks. RICA is based on the temporal correlations and the second order statistics of signal. This method e is applied for improving the analysis rate and speed in which the sources have very small or zero kurtosis. The proposed method has been applied for separating the 10 mixed finger prints of $256{\times}256$-pixel and the 4 mixed images of $512{\times}512$-pixel, respectively. The simulation results show that RICA has the separating rate and speed better than those using the conventional FP algorithm based on Newton method.

  • PDF

Laver Farm Feature Extraction From Landsat ETM+ Using Independent Component Analysis

  • Han J. G.;Yeon Y. K.;Chi K. H.;Hwang J. H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.359-362
    • /
    • 2004
  • In multi-dimensional image, ICA-based feature extraction algorithm, which is proposed in this paper, is for the purpose of detecting target feature about pixel assumed as a linear mixed spectrum sphere, which is consisted of each different type of material object (target feature and background feature) in spectrum sphere of reflectance of each pixel. Landsat ETM+ satellite image is consisted of multi-dimensional data structure and, there is target feature, which is purposed to extract and various background image is mixed. In this paper, in order to eliminate background features (tidal flat, seawater and etc) around target feature (laver farm) effectively, pixel spectrum sphere of target feature is projected onto the orthogonal spectrum sphere of background feature. The rest amount of spectrum sphere of target feature in the pixel can be presumed to remove spectrum sphere of background feature. In order to make sure the excellence of feature extraction method based on ICA, which is proposed in this paper, laver farm feature extraction from Landsat ETM+ satellite image is applied. Also, In the side of feature extraction accuracy and the noise level, which is still remaining not to remove after feature extraction, we have conducted a comparing test with traditionally most popular method, maximum-likelihood. As a consequence, the proposed method from this paper can effectively eliminate background features around mixed spectrum sphere to extract target feature. So, we found that it had excellent detection efficiency.

  • PDF

Measurements of Impervious Surfaces - per-pixel, sub-pixel, and object-oriented classification -

  • Kang, Min Jo;Mesev, Victor;Kim, Won Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • The objectives of this paper are to measure surface imperviousness using three different classification methods: per-pixel, sub-pixel, and object-oriented classification. They are tested on high-spatial resolution QuickBird data at 2.4 meters (four spectral bands and three principal component bands) as well as a medium-spatial resolution Landsat TM image at 30 meters. To measure impervious surfaces, we selected 30 sample sites with different land uses and residential densities across image representing the city of Phoenix, Arizona, USA. For per-pixel an unsupervised classification is first conducted to provide prior knowledge on the possible candidate spectral classes, and then a supervised classification is performed using the maximum-likelihood rule. For sub-pixel classification, a Linear Spectral Mixture Analysis (LSMA) is used to disentangle land cover information from mixed pixels. For object-oriented classification several different sets of scale parameters and expert decision rules are implemented, including a nearest neighbor classifier. The results from these three methods show that the object-oriented approach (accuracy of 91%) provides more accurate results than those achieved by per-pixel algorithm (accuracy of 67% and 83% using Landsat TM and QuickBird, respectively). It is also clear that sub-pixel algorithm gives more accurate results (accuracy of 87%) in case of intensive and dense urban areas using medium-resolution imagery.

A CLASSIFICATION METHOD BASED ON MIXED PIXEL ANALYSIS FOR CHANGE DETECTION

  • Jeong, Jong-Hyeok;Takeshi, Miyata;Takagi, Masataka
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.820-824
    • /
    • 2003
  • One of the most important research areas on remote sensing is spectral unmixing of hyper-spectral data. For spectral unmixing of hyper spectral data, accurate land cover information is necessary. But obtaining accurate land cover information is difficult process. Obtaining land cover information from high-resolution data may be a useful solution. In this study spectral signature of endmembers on ASTER acquired in October was calculated from land cover information on IKONOS acquired in September. Then the spectral signature of endmembers applied to ASTER images acquired on January and March. Then the result of spectral unmxing of them evauateted. The spectral signatures of endmembers could be applied to different seasonal images. When it applied to an ASTER image which have similar zenith angle to the image of the spectral signatures of endmembers, spectral unmixing result was reliable. Although test data has different zenith angle from the image of spectral signatures of endmembers, the spectral unmixing results of urban and vegetation were reliable.

  • PDF

Photo Diode and Pixel Modeling for CMOS Image Sensor SPICE Circuit Analysis (CMOS 이미지센서 SPICE 회로 해석을 위한 포토다이오드 및 픽셀 모델링)

  • Kim, Ji-Man;Jung, Jin-Woo;Kwon, Bo-Min;Park, Ju-Hong;Park, Yong-Su;Lee, Je-Won;Song, Han-Jung
    • 전자공학회논문지 IE
    • /
    • v.46 no.4
    • /
    • pp.8-15
    • /
    • 2009
  • In this paper, we are indicated CMOS Image sensor circuit SPICE analysis for the Photo Diode and pixel Modeling. We get a characteristic of the photoelectric current using a device simulator Medici and develop the Photodiode model for applying a SPICE simulation. For verifying the result, We compared the result of SPICE simulation with the result of mixed mode simulation about the testing circuit structure consisted photodiode and NMOS.

Unsupervised Endmember Selection Optimization Process based on Constrained Linear Spectral Unmixing of Hyperion Image (Hyperion 영상의 제약선형분광혼합분석 기반 무감독 Endmember 추출 최적화 기법)

  • Choi Jae-Wan;Kim Yong-Il;Yu Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.211-216
    • /
    • 2006
  • The Constrained Linear Spectral Unmixing(CLSU) is investigated for sub-pixel image processing, Its result is the abundance map which mean fractions of endmember existing in a mixed pixel. Compared to the Linear Spectral Unmixing using least square method, CLSU uses the NNLS (Non-Negative Least Square) algorithm to guarantee that the estimated fractions are constrained. But, CLSU gets Into difficulty in image processing due to select endmember at a user's disposition. In this study, endmember selection optimization method using entropy in the error-image analysis is proposed. In experiments which is used hyperion image, it is shown that our method can select endmember number than CLSU based on unsupervised endemeber selection.

  • PDF

Application of Multi-satellite Sensors to Estimate the Green-tide Area (황해 부유 녹조 면적 산출을 위한 멀티 위성센서 활용)

  • Kim, Keunyong;Shin, Jisun;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.339-349
    • /
    • 2018
  • The massive green tide occurred every summer in the Yellow Sea since 2008, and many studies are being actively conducted to estimate the coverage of green tide through analysis of satellite imagery. However, there is no satellite images selection criterion for accurate coverage calculation of green tide. Therefore, this study aimed to find a suitable satellite image from for the comparison of the green tide coverage according to the spatial resolution of satellite image. In this study, Landsat ETM+, MODIS and GOCI images were used to coverage estimation and its spatial resolution is 30, 250 and 500 m, respectively. Green tide pixels were classified based on the NDVI algorithm, the difference of the green tide coverage was compared with threshold value. In addition, we estimate the proportion of the green tide in one pixel through the Linear Spectral Unmixing (LSU) method, and the effect of the difference of green tide ratio on the coverage calculation were evaluated. The result of green tide coverage from the calculation of the NDVI value, coverage of green tide usually overestimate with decreasing spatial resolution, maximum difference shows 1.5 times. In addition, most of the pixels were included in the group with less than 0.1 (10%) LSU value, and above 0.5 (50%) LSU value accounted for about 2% in all of three images. Even though classified as green tide from the NDVI result, it is considered to be overestimated because it is regarded as the same coverage even if green tide is not 100% filled in one pixel. Mixed-pixel problem seems to be more severe with spatial resolution decreases.