• Title/Summary/Keyword: mixed integer and linear programming

Search Result 132, Processing Time 0.031 seconds

Reliability-aware service chaining mapping in NFV-enabled networks

  • Liu, Yicen;Lu, Yu;Qiao, Wenxin;Chen, Xingkai
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.207-223
    • /
    • 2019
  • Network function virtualization can significantly improve the flexibility and effectiveness of network appliances via a mapping process called service function chaining. However, the failure of any single virtualized network function causes the breakdown of the entire chain, which results in resource wastage, delays, and significant data loss. Redundancy can be used to protect network appliances; however, when failures occur, it may significantly degrade network efficiency. In addition, it is difficult to efficiently map the primary and backups to optimize the management cost and service reliability without violating the capacity, delay, and reliability constraints, which is referred to as the reliability-aware service chaining mapping problem. In this paper, a mixed integer linear programming formulation is provided to address this problem along with a novel online algorithm that adopts the joint protection redundancy model and novel backup selection scheme. The results show that the proposed algorithm can significantly improve the request acceptance ratio and reduce the consumption of physical resources compared to existing backup algorithms.

Efficient Slice Allocation Method using Cluster Technology in Fifth-Generation Core Networks

  • Park, Sang-Myeon;Mun, Young-Song
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.3
    • /
    • pp.185-190
    • /
    • 2019
  • The explosive growth of data traffic and services has created cost challenges for networks. Studies have attempted to effectively apply network slicing in fifth generation networks to provide high speed, low latency, and various compatible services. However, in network slicing using mixed-integer linear programming, the operation count increases exponentially with the number of physical servers and virtual network functions (VNFs) to be allocated. Therefore, we propose an efficient slice allocation method based on cluster technology, comprising the following three steps: i) clustering physical servers; ii) selecting an appropriate cluster to allocate a VNF; iii) selecting an appropriate physical server for VNF allocation. Solver runtimes of the existing and proposed methods are compared, under similar settings, with respect to intra-slice isolation. The results show that solver runtime decreases, by approximately 30% on average, with an increase in the number of physical servers within the cluster in the presence of intra-slice isolation.

Multiobjective Vehicle Scheduling Problem with Time and Area-Dependent Travel Speeds: Scheduling Algorithm and Expert System (시간대 및 구역의존 차량이동속도를 고려하는 다목적차량일정문제: 일정계획해법과 전문가시스템)

  • Park, Yang-Byung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.4
    • /
    • pp.621-633
    • /
    • 1997
  • This paper is concerned with the multiobjective vehicle scheduling problem with time and area-dependent travel speeds(MVSPTD), in which two conflicting objectives are explicitly treated and the travel speed between two locations depends on the passing area and time of day. The two objectives are the minimization of total vehicle travel time and the minimization of total weighted tardiness. First, I construct a mixed integer linear programming formulation of the MVSPTD, and present o heuristic algorithm that builds the vehicle schedules based on the savings computed. The results of computational experiments showed that the heuristic performs very well. Finally, I propose an expert system for vehicle scheduling in the MVSPTD. Its whole process is executed under VP-Expert expert system environment.

  • PDF

Design and Configuration of Reconfigurable ATM Networks with Unreliable Links

  • Lee, Jong-Hyup
    • ETRI Journal
    • /
    • v.21 no.4
    • /
    • pp.9-22
    • /
    • 1999
  • This paper considers a problem of configuring both physical backbone and logical virtual path (VP) networks in a reconfigurable asynchronous transfer mode (ATM) network where links are subject to failures. The objective is to determine jointly the VP assignment, the capacity assignment of physical links and the bandwidth allocation of VPs, and the routing assignment of traffic demand at least cost. The network cost includes backbone link capacity expansion cost and penalty cost for not satisfying the maximum throughput of the traffic due to link failures or insufficient link capacities. The problem is formulated as a zero-one non-linear mixed integer programming problem, for which an effective solution procedure is developed by using a Lagrangean relaxation technique for finding a lower bound and a heuristic method exploited for improving the upper bound of any intermediate solution. The solution procedure is tested for its effectiveness with various numerical examples.

  • PDF

Multi-mission Scheduling Optimization of UAV Using Genetic Algorithm (유전 알고리즘을 활용한 무인기의 다중 임무 계획 최적화)

  • Park, Ji-hoon;Min, Chan-oh;Lee, Dae-woo;Chang, Woohyuck
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.54-60
    • /
    • 2018
  • This paper contains the multi-mission scheduling optimization of UAV within a given operating time. Mission scheduling optimization problem is one of combinatorial optimization, and it has been shown to be NP-hard(non-deterministic polynomial-time hardness). In this problem, as the size of the problem increases, the computation time increases dramatically. So, we applied the genetic algorithm to this problem. For the application, we set the mission scenario, objective function, and constraints, and then, performed simulation with MATLAB. After 1000 case simulation, we evaluate the optimality and computing time in comparison with global optimum from MILP(Mixed Integer Linear Programming).

Multiple Product Single Facility Stockout Avoidance Problem (SAP) and Weighted Stockout Problem (WSP)

  • Moon, Il-Kyeong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.3
    • /
    • pp.137-158
    • /
    • 1992
  • We study the Multiple Product Single Facility Stockout Avoidance Problem (SAP). That is the problem of determining, given initial inventories, whether there is a multiple product single facility production schedule that avoids stockouts over a given time horizon. The optimization version of the SAP where stockouts are pnelized linearly is also studied. We call this problem the Weighted Stockout Problem (WSP). Both problems are NP-hard in the strong sense. We develop Mixed Integer Linear Programming (MIP) formulations for both the SAP and the WSP. In addition, several heuristic algorithms are presented and performances are tested using computational experiments. We show that there exist polynomial algorithms for some special cases of the SAP and the WSP. We also present a method to phase into a target cyclic schedule for infinite horizon problems. These can be used as a practical scheduling tool for temporarily overloaded facilities or to reschedule production after a disruption.

  • PDF

Supply Chain Network Design - a Model and its Applications (공급사슬망 설계를 위한 수리모형 수립 및 응용)

  • Kim Jeonghyuk;Kim Daeki
    • Korean Management Science Review
    • /
    • v.21 no.2
    • /
    • pp.15-25
    • /
    • 2004
  • Great effort has been exerted to redesign the supply chain network as a means to improve corporate competitiveness. In this study, we present a mathematical model and a solution system to help redesign corporate logistics networks. The objective of the model is to minimize total logistics costs. We applied the solution system to real problem cases. We use the model and the concept to develop decision support system that is based on C++ with the use of CPLEX callable library as a solution engine. We tested and verified the DSS for redesigning the network of a large Korean electronics company. Through various scenario analyses. we recommend to redesign their supply chain network that demonstrates the possibility of substantial logistics cost savings.

Restructuring Primary Health Care Network to Maximize Utilization and Reduce Patient Out-of-pocket Expenses

  • Bardhan, Amit Kumar;Kumar, Kaushal
    • Asian Journal of Innovation and Policy
    • /
    • v.8 no.1
    • /
    • pp.122-140
    • /
    • 2019
  • Providing free primary care to everyone is an important goal pursued by many countries under universal health care programs. Countries like India need to efficiently utilize their limited capacities towards this purpose. Unfortunately, due to a variety of reasons, patients incur substantial travel and out-of-pocket expenses for getting primary care from publicly-funded facilities. We propose a set-covering optimization model to assist health policy-makers in managing existing capacity in a better way. Decision-making should consider upgrading centers with better potential to reduce patient expenses and reallocating capacities from less preferred facilities. A multinomial logit choice model is used to predict the preferences. In this article, a brief background and literature survey along with the mixed integer linear programming (MILP) optimization model are presented. The working of the model is illustrated with the help of numerical experiments.

MILP model for short-term scheduling of multi-purpose batch plants with batch distillation process

  • Ha, Jin-Juk;Lee, Euy-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1826-1829
    • /
    • 2003
  • Fine chemical production must assure high-standard product quality as well as characterized as multi-product production in small volumes. Installing high-precision batch distillation is one of the common elements in the successful manufacturing of fine chemicals, and the importance of the process operation strategy with quality assurance cannot be overemphasized. In this study, we investigate the optimal operation strategy and production planning of a sequential multi-purpose plants consisting of batch processes and batch distillation with unlimited intermediate storage. We formulated this problem as an MILP model. A mixed-integer linear programming model is developed based on the time slot, which is used to determine the production sequence and the production path of each batch. Illustrative examples show the effectiveness of the approach.

  • PDF

A Broadband Local Access Network Design with Double-star Topology under Uncertain Demands (불확실한 수요 하에서 이중성형 구조의 광댁역 접속망 설계에 관한 연구)

  • 윤문길
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.2
    • /
    • pp.87-100
    • /
    • 2000
  • As a result of rapid advances in communication technology, fiber optics have begun to be adopted in most telecommunication systems 3s an economic choice Due to the trend of evolution toward broadband communication network with fiber optics and electronic devices. the network design problem for broadband communication has been received a great deal of research attention recently. In this paper, we address a topological design problem for broadband local access network with uncertain demands, which has received surprisingly little attention so far. in our problem, we select a set of hubs and links for constructing network expected penalty cost for the amount of undersupplied In addition to the usual cost terms of the fixed demand problem Our problem can be approximated as a mixed 0-1 integer programming problem by using Szwarc’s linear approximation technique. Then the problem is transformed successfully into a version of classical network design model. Some computational experiments for the model and concluding remarks are described.

  • PDF