• 제목/요약/키워드: mixed behavior

검색결과 1,129건 처리시간 0.028초

직접측정법을 이용한 혼합모드 하중 하에서 피로균열의 닫힘과 전파거동 (Fatigue Crack Closure and Propagation Behavior Under Mixed-Mode Loading Observed by the Direct Measuring Method)

  • 송삼홍;서기정;이정무
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.152-158
    • /
    • 2005
  • The stress conditions acting on the practical structure are complex, and thus most cracks existing in the practical structures are under mixed-mode loading conditions. The effect of shear load component of mixed-mode loading acts more greatly in the stage of crack initiation and initial propagation than crack propagation stage. Hence, research on the behavior in the stage of crack initiation and initial propagation need to be examined in order to evaluate behavior of mixed-mode fatigue cracks. In this study, the crack tip displacement(CTD) was measured by using the direct measuring method(DMM). We examined the behavior at crack tip by determining crack opening load$(P_{op})$. From the test results, the propagation behavior of mixed-mode fatigue cracks was evaluated by considering mixed-mode crack closure. Also, we examined the characteristic of crack propagation under mixed-mode loading with crack propagation direction.

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.

혼합모드 단일과대하중 하의 피로균열 전파거동에 관한 실험적 연구 (An Experimental Study on the Fatigue Crack Propagation Behavior Under Mixed-Mode Single Overload)

  • 송삼홍;이정무;홍석표
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.119-124
    • /
    • 2003
  • In this study, retardation behavior of fatigue crack under single overloading of the mixed mode I+II state was experimentally investigated. To produce single overload in the mixed mode I+II state, the compact tension shear (CTS) specimen and loading device were used. The propagation tests for fatigue crack were performed under mode I loading overloading afterwards. We examined the observed deformation aspects, variation of fatigue life and crack propagation rate, and the aspects of retardation behavior from tests. The retardation effect of mixed-mode single overload on fatigue crack propagation behavior was smaller than that of mode I single overload. It has been confirmed that the retardation behavior did not immediately appear and the retardation length was short when the component of mixed-mode overload was changed.

  • PDF

단일과대하중의 작용모드 변화가 피로균열의 전파거동에 미치는 영향 (Effects with the Variation of Single Overload mode on Propagation Behavior of Fatigue Crack)

  • 송삼홍;이정무;신승만;홍석표;서기정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1508-1512
    • /
    • 2003
  • In this study, retardation behavior of fatigue crack under single overloading of the mixed mode state was experimentally investigated. To produce single overload in the mixed mode I+II state, the compact tension shear (CTS) specimen and loading device were used. The propagation tests for fatigue crack were performed under mode I and mixed-mode loading overloading afterwards. We examined the observed deformation aspects, the variation of fatigue life and crack propagation rate, and the aspects of retardation behavior from tests. The retardation effect of mixed-mode single overload on fatigue crack propagation behavior was smaller than that of mode I single overload. Also the loading modes of variable and constant amplitude loads have influence on the retardation behavior of fatigue cracks.

  • PDF

파괴에너지를 고려한 유사취성재료의 혼합모드 균열해석 (Mixed-Mode Fracture Analysis of Quasi-Brittle Material Considering Fracture Energy)

  • 임윤묵;김문겸;조석호;신승교
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권4호
    • /
    • pp.129-137
    • /
    • 2002
  • In this study, mixed-mode fracture behavior is simulated effectively through the numerical method using the axial defomation link elements which can predict the behavior of quasi-brittle material. The behavior of quasi-brittle material is modeled numerically using the exponential tension softening constitutive equation and verified by comparing with the result of published experimental result. In order to verify the mixed-mode fracture behavior through the developed numerical method, analysis of mode I is formulated and the result is compared with those of FEM first, and then mixed-mode analysis is analyzed and compared with existing theories and experimental data. Also the characteristics of fracture behavior is examined through the analysis of crack generation with respect to various mode mixity.

혼합모드 하중에서의 피로균열 전파거동 (Fatigue Crack Propagation Behavior under Mixed Mode Loading)

  • 송삼홍;이정무;최병호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.481-484
    • /
    • 2000
  • Practical structures are subject not only to tension but also to shear and torsional loading. Even under uniaxial loading, when the load is not perpendicular to the crack plane, mixed mode crack can occur. Hence, it is necessary to evaluate the fatigue behavior under mixed mode loading. In this study, the propagation behavior of the fatigue crack of the STS304 steels under mixed mode loading condition was investigated. The mode I and II stress intensity factors of CTS specimen were calculated using elastic finite element method with experimental results. The fatigue crack propagation under mixed mode was evaluated by the effective stress intensity factor proposed by Tanaka.

  • PDF

혼합모드 단일과대하중 하에서 피로균열 전파거동의 예측 (Prediction of Fatigue Crack Propagation Behavior Under Mixed-Mode Single Overload)

  • 이정무;송삼홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.359-364
    • /
    • 2004
  • In this study, experiments were tried on the mixed-mode I+II single overloading model which changes the loading mode of overload and fatigue load. Aspects of deformation field in front of the crack which is formed by mixed-mode I+II single overloading were experimentally studied. Then the shape and size of mixed-mode plastic zone were approximately calculated. The propagation behavior of fatigue crack was examined under the test conditions combined by changing the loading mode. The behavior of fatigue cracks were greatly affected by shapes of plastic deformation field and applying mode of fatigue load. Accuracy of prediction and evaluation for fatigue life may be improved by considering all aspects of deformation and behavior of fatigue cracks.

  • PDF

단일 및 혼합모드 하중하에서의 레일강의 파괴조건 및 피로균열진전거동 (Fracture Criterion and Fatigue Crack Growth Behavior of Rail Steel Under Mode I & Mixed Mode Loading)

  • 김정규;이종선;김철수
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.1039-1047
    • /
    • 1999
  • It is necessary to evaluate the fatigue behavior of rail steel under the multi-axial stress state to assure the railway vehicle's safety. For this purpose, the stress analysis to investigate the crack initiation criteria, static failure and fatigue behavior under mixed-mode are performed. The stress analysis results show that the initiation of the transverse fissure depends on the maximum shear stress below the surface. For the mixed mode, the fatigue crack growth behavior which is represented by the projection crack length and comparative S.I.F, ${\Delta}K_v$, shows the more conservative results. Also, its rate is lower than that of the case of the mode I, and this difference decreases with increasing the stress ratio, R.

냉간압축하에서 혼합 금속분말의 치밀화 거동에 관한 유한요소해석 (A Finite Element Analysis for Densification Behavior of Mixed Metal Powder under Cold Compaction)

  • 조장혁;조진호;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.393-398
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction was investigated. By mixing the yield functions originally proposed by Fleck-Gurson for pure powder, a new mixed yield functions In terms of volume fractions and contact numbers of Cu powder were employed in the constitutive models. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data. and with calculated results from the model of Kim et at. for densification of mixed powder under cold isostatic pressing and cold die compaction. Finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

  • PDF

혼합모드 하중에서의 STS304의 피로균열 전과거동 (Fatigue Crack Propagation Behavior in STS304 under Mixed Mode Loading)

  • 송삼홍;이정무
    • 한국정밀공학회지
    • /
    • 제18권9호
    • /
    • pp.131-139
    • /
    • 2001
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failure occur from cracks subjected to mixed mode loadings. Hence, it is necessary to evaluate the fatigue behavior under mixed mode loading. Under mixed mode loading conditions, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. The mode I and II stress intensity factors of CTS specimen were calculated using elastic finite element method. The propagation behavior of the fatigue crack of the STS304 steeds under mixed mode loading condition was evacuated by using stress intensity factors $K_I$ and $K_II. The MTS criterion and effective stress intensity factor were applied to predict the crack propagation direction and the fatigue crack propagation rate.

  • PDF