• Title/Summary/Keyword: mix design method

Search Result 245, Processing Time 0.026 seconds

Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming

  • Alkroosh, Iyad S.;Sarker, Prabir K.
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.295-302
    • /
    • 2019
  • Evolutionary algorithms based on conventional statistical methods such as regression and classification have been widely used in data mining applications. This work involves application of gene expression programming (GEP) for predicting compressive strength of fly ash geopolymer concrete, which is gaining increasing interest as an environmentally friendly alternative of Portland cement concrete. Based on 56 test results from the existing literature, a model was obtained relating the compressive strength of fly ash geopolymer concrete with the significantly influencing mix design parameters. The predictions of the model in training and validation were evaluated. The coefficient of determination ($R^2$), mean (${\mu}$) and standard deviation (${\sigma}$) were 0.89, 1.0 and 0.12 respectively, for the training set, and 0.89, 0.99 and 0.13 respectively, for the validation set. The error of prediction by the model was also evaluated and found to be very low. This indicates that the predictions of GEP model are in close agreement with the experimental results suggesting this as a promising method for compressive strength prediction of fly ash geopolymer concrete.

Design and Site Installation of Outdoor Sculpture of Light Emotion Friendly Concrete (감성친화형콘크리트(LEFC) 실외 조형물 디자인 및 현장설치)

  • Seo, Seung-Hoon;Kim, Soo-Yeon;Kim, Byoung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.142-143
    • /
    • 2020
  • A study was conducted on the production of LEFC using the Precast method, not the on-site construction. LEFC, Light Emotion Friendly Concrete, has the advantage of plastic rods being inserted to allow light to transmit, but because of the lack of adhesion to concrete, it leads to a decline in mechanical performance and durability. Therefore, it is necessary to apply precasting techniques to ensure homogeneous and superior quality of LEFC. In this study, wooden molds were used and plastic rods were arranged on porous acrylic plates. Prototyping was carried out with a UHPC mix proportioning to ensure flowability, self-consolidating performance and mechanical performance.

  • PDF

Segregation resistance of high fluidity concrete depending on addition method of thixotropy-inducing materials (고유동 콘크리트의 고요변성 부여 물질 혼합방법에 따른 재료분리 방지 여부)

  • Kim, Young-Ki;Lee, Yu-Jeong;Heo, Jun-Ho;Han, Dongyeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.113-114
    • /
    • 2022
  • The aim of the research is to evaluate the segregation resistivity of the mixture conditions by changing the PVA and borax solutions for thixotropic property on concrete mixture. Since the water addition caused by producing solutions of PVA and borax induces segregation of the concrete mixture, the unit water was reduced by replacing the water amount for PVA and borax solution. By replacing the water from PVA and borax solutions, the segregation was prevented with prefixed concrete mix design and thixotropic properties were also occurred.

  • PDF

The Case Study on the Design, Construction, Quality Control of Deep Cement Mixing Method (심층혼합처리공법(DCM)의 설계, 시공 및 품질관리 사례 연구)

  • Kim, Byung-Il;Park, Eon-Sang;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.19-32
    • /
    • 2021
  • In this study, evaluation and consideration of domestic/overseas design, construction, and quality control performed by the authors on the deep cement mixing method were performed, and improvements for the development of the DCM method were suggested in the future. As a result of this study, it was found that the cross-sectional area correction for strength is required during the laboratory test of mix proportion, and caution is required because the extrapolation method may lead to different results from the actual one. Applicable design methods should be selected in consideration of both the improvement ratio and the type of improvement during design, and it was confirmed that the allowable compressive strength to which the safety factor was applied refers to the standard value for stability review and not the design parameters. In the case of the stress concentration ratio, rather than applying a conventional value, it was possible to perform economical design by calculating the experimental and theoretical stress concentration ratio reflecting the design conditions. In the case where pre-boring is expected during construction, if the increased water content is not large compared to the original, there were cases where a major problem did not occur even if the result that did not consider the increase in water content was used. In addition, it was confirmed that when the ratio of the top treatment length to the improved length is high, a small amount of design cement contents per unit length can be injected during construction. In the case of quality control, it was evaluated that D/4~2D/4 for single-axis and D/4 point for multi-axis were optimal for coring of grouting mixtures. As an item for quality control, it is judged that the standard that considers the TCR along with the unconfined compressive strength of grouting mixtures is more suitable for the domestic situation.

Optimizing the mix design of pervious concrete based on properties and unit cost

  • Taheri, Bahram M.;Ramezanianpour, Amir M.
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.285-298
    • /
    • 2021
  • This study focused on experimental evaluation of mechanical properties of pervious concrete mixtures with the aim of achieving higher values of strength while considering the associated costs. The effectiveness of key parameters, including cement content, water to cement ratio (W/C), aggregate to cement ratio (A/C), and sand replacement was statistically analyzed using paired-samples t-test, Taguchi method and one-way ANOVA. Taguchi analysis determined that in general, the role of W/C was more significant in increasing strength, both compressive and flexural, than cement content and A/C. It was found that increase in replacing percent of coarse aggregate with sand could undermine specimens to percolate water, though one-way ANOVA analysis determined statistically significant increases in values of strength of mixtures. Cost analysis revealed that higher strengths did not necessarily correspond to higher costs; in addition, increasing the cement content was not an appropriate scenario to optimize both strength and cost. In order to obtain the optimal values, response surface method (RSM) was carried out. RSM optimization helped to find out that W/C of 0.40, A/C of 4.0, cement content of about 330 kg/m3 and replacing about 12% of coarse aggregate with sand could result in the best values for strength and cost while maintaining adequate permeability.

Box-Wilson Experimental Design-based Optimal Design Method of High Strength Self Compacting Concrete (Box-willson 실험계획법 기반 고강도 자기충전형 콘크리트의 최적설계방법)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.92-103
    • /
    • 2015
  • Box-Wilson experimental design method, known as central composite design, is the design of any information-gathering exercises where variation is present. This method was devised to gather as much data as possible in spite of the low design cost. This method was employed to model the effect of mixing factors on several performances of 60 MPa high strength self compacting concrete and to numerically calculate the optimal mix proportion. The nonlinear relations between factors and responses of HSSCC were approximated in the form of second order polynomial equation. In order to characterize five performances like compressive strength, passing ability, segregation resistance, manufacturing cost and density depending on five factors like water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content, the experiments were made at the total 52 experimental points composed of 32 factorial points, 10 axial points and 10 center points. The study results showed that Box-Wilson experimental design was really effective in designing the experiments and analyzing the relation between factor and response.

A Study on Hybrid Expressed in Modern Fashion - Focusing on the End of 1990s - (현대패션에 표현된 하이브리드 경향 연구 - 1990년대 후반을 중심으로 -)

  • 임영자;한윤숙
    • Journal of the Korean Society of Costume
    • /
    • v.51 no.5
    • /
    • pp.113-134
    • /
    • 2001
  • This study was carried out with an objective to prepare the framework of conformity for the 21st century modern fashion, which is interactive with mankind, based on a position that the 21st century contemporary fashion with its amalgamating trend of diversified artistic forms may not be elucidated on a standpoint centering on one certain modality. The hybrid fashion trend of historical modality which provides freedom and satisfaction in creation of an individuals expressive power in expressing true desire of mans inside through man-centered thought of the times has made multifarious motives of the past and present fragmentary. It thus extracts inner divisions and the concept of consolidation through three-dimensional form. Modern fashion is newly interpreted by the material and details of high technologies. and is harmonized by mix and match with various expressions. By having it, it is being expressed together with many types of dresses and ornaments. Modern fashion is being expressed together with many types of dresses and ornaments by new interpretations with the material and details of high technologies and by being harmonized with mix and match with various expressions. The hybrid fashion design trend of regional elements formed by stimuli and contacts of diverse local culture by globalization of network that was achieved by scientific technologies of the contemporary information society has disintegrated varied boundaries in the conventional culture by the latest communication technology-new media on the basis of newly created culture. The fact that regional elements could be expressed as if they were interrelated without each being deprived of originality may be explained with an interpretation on pluralism. The hybrid fashion design trend of cultural aspect, which manifests in the background of scientific technological culture as it transcends the societal-cultural boundaries based on the de-centralization theory of Frederic Jameson, has supplemented the imperfect meanings through conversional correlation with other forms and internal program changes. The middle stratal and polyhedral characteristics are seen as each cultural element is dismantled and reassembled by application of 'multiple-time point expression'. Design forming method is not to bring destruction from outside, but to embrace instability and chaos through radical dismantling of the inside. and to pursue diversity and openness. Thus. it is implemented by an approach that takes the role of design process. In communication of discontinuity, continuity was dismantled through forms of mixing, overlap, perversion, insertion and coincidence.

  • PDF

A Comparative Study on Power Tool Manufacturers' Products Spec. and Design Development Features - By the Case Study on BOSCH, BLACK&DECKER and KEYANG Electrics- (전동공구 회사의 제품사양별 디자인개발특성 비교연구 -보슈(BOSCH), 블랙앤데커(BLACK&DECKER), 계양전기 사례를 중심으로 -)

  • 채승진
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.383-392
    • /
    • 2004
  • The power tools is the product using working power generated by electric motor. Many companies are manufacturing numerous devices. Main features of tools are included various assembled products, small, light and solid and durable enough to match several standards. Fundamental requirements for the product is excellent performance and convenience for use. The quality of them depends on the equipped motor'(s) capability, accuracy of gear and endurance against worn-out. By adapting the state-of-the-art parts, they could be used in the place from home to heavy industry broadly. They can be classified electronic drills, grinders, saws and sanders families for the household appliances. For industrial tools, bore drill, grinder, polisher, and driver drill are classified as special and high priced group. This study presents the strategy of power tool development of BOSCH, BLACK&DECKER and KEYANG. Their products were analyzed in terms of product line and product mix concept. Then they are examined by design elements, such as color, shape and material for housing. As an analysis method, the image scale parameter and criteria were applied to each company's product.

  • PDF

Mechanical Characteristics of Asphalt Stabilized Soil (아스팔트 안정처리토의 역학적 특성 연구)

  • 박태순;최필호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.189-197
    • /
    • 2003
  • The treatment and hauling of surplus soils which occur from construction activity are costly and have been demanding a reasonable recycling method. This study presents laboratory test results regarding the mechanistic properties of asphalt stabilized soils. The foamed asphalt equipment which generates the asphalt bubble was used to mix the soil. The marshall stability, indirect tensile test, resilient modulus, creep test and triaxial test(UU) were conducted to find out the performance of the asphalt stabilized soil. The test results were compared with the samples that fabricated in different conditions(the samples without asphalt and the reinforced samples using 2% cement). The inclusion of the asphalt in the soil has improved the marshall stability, resilient modulus and moisture susceptibility, and the addition of the 2% cement has even more increased these properties. The amount of the fines and the optimum moisture contents for mixing affects the mechanistic properties and important parameters for mix design.

A Study on the Temperature Crack Control for Analysis of Hydration Heat of Mass Concrete Transfer Girder with Design Strength $40N/mm^2$ (설계강도 $40N/mm^2$ 매스콘크리트인 전이층보의 수화열 해석을 통한 온도 균열 제어에 관한 연구)

  • Lee, Jong-Suk;Kim, Ju-Sang;Kang, Youn-Woo;Kim, Jae-Hwan;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.33-36
    • /
    • 2007
  • In order to select the optimum mix for the required fluidity and strength of mass concrete which is applied to transfer girder and to choose the optimum curing method depending on circumstances through hydration heat analysis of mass concrete, this study examined slump flow, air content and elapsed variation (0, 30, 60, 90) in unhardened concrete properties and reviewed compressive strength characteristics in hardening properties. And hydration heat analysis results through simulation are as follows; 1) Fluidity changes of unhardened concrete showed no significant difference, and those of elapsed variation also showed no difference but a bit of tendency to increase in comparison with the initial properties. 2) The higher the water-binder ratio was, the lower the compressive strength properties were, and the higher the fly ash replacement rate was, the lower the compressive strength development was. 3) In case of $Fc=40N/mm^2$, the optimum mix was fly ash replacement rate of 15% from water-binder ratio of 33.0%. 4) Hydration heat analysis results showed that in case of bundle cast, concrete temperature profile characteristics around transfer girder was unfavorable, and in case of separate cast, constant curing for at least seven days guaranteed thermal cracking index of 1.2.

  • PDF