• Title/Summary/Keyword: mission station

Search Result 164, Processing Time 0.021 seconds

Effect of the Signal-to-Noise Power Spectra Ratio On MTF compensated EOC images

  • Kang, Chi-Ho;Choi, Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.202-207
    • /
    • 2002
  • EOC (Electro-Optical Camera) of KOMPSAT-1 (Korea Multi-Purpose SATellite) has been producing land imageries of the world since January 2000. After image data are acquired by EOC, they are transmitted from satellite to ground via X-band RF signal. Then, EOC image data are generated and pass through radiometric and geometric corrections to generate standard products of EOC images. After radiometric correction on EOC image data, Modulation Transfer Function (MTF) compensation is applicable on EOC images with user's request for better image quality. MTF compensation is concerned with filtering EOC images to minimize the effect of degradations. For Image Receiving and Processing System (IRPE) at KOMPSAT Ground Station (KGS), Wiener filter is used in MTF compensation for EOC images. If the Pointing Spread Function (PSF) of EOC system is known, signal-to-noise power spectra ratio is the only factor in the determination of Wiener filter. In this paper, MTF compensation in IRPE at KGS is introduced and MTF compensated EOC 1R images are generated using Wiener filters with various signal-to-noise power spectra ratios. MTF compensated EOC 1R images are correlated with EOC 1R images for observing linearities between them. As a result, the effect of signal-to-noise power spectra ratio is shown on MTF compensated EOC 1R images.

  • PDF

Effect of the Signal-to-Noise Power Spectra Ratio on MTF Compensated EOC Images

  • Kang, Chi-Ho;Choi, Hae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • EOC (Electro-Optical Camera) of KOMPSAT-1 (Korea Multi-Purpose SATellite) has been producing land imageries of the world since January 2000. After image data are acquired by EOC, they are transmitted from satellite to ground via X-band RF signal. Then, EOC image data are retrieved and pass through radiometric and geometric corrections to generate standard products of EOC images. After radiometric correction on EOC image data, Modulation Transfer Function (MTF) compensation is applicable on EOC images with user's request for better image quality. MTF compensation is concerned with filtering EOC images to minimize the effect of degradations. For Image Receiving and Processing System (IRPE) at KOMPSAT Ground Station (KGS), Wiener filter is used for MTF compensation of EOC images. If the Pointing Spread Function (PSF) of EOC system is known, signal-to-noise (SNR) power spectra ratio is the only variable which determines the shape of Wiener filter In this paper, MTF compensation in IRPE at KGS is briefly addressed, and MTF compensated EOC images are generated using Wiener filters with various SNR power spectra ratios. MTF compensated EOC images are compared with original EOC 1R images to observe correlations between them. As a result, the effect of SNR power spectra ratio on MTF compensated EOC images is shown.

Acquiring Precise Coordinates of Ground Targets through GCP Geometric Correction of Captured Images in UAS (무인 항공 시스템에서 촬영 영상의 GCP 기하보정을 통한 정밀한 지상 표적 좌표 획득 방법)

  • Namwon An;Kyung-Mee Lim;So-Young Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.129-138
    • /
    • 2023
  • Acquiring precise coordinates of ground targets can be regarded as the key mission of the tactical-level military UAS(Unmanned Aerial System) operations. The coordinates deviations for the ground targets estimated from UAV (Unmanned Aerial Vehicle) images may depend on the sensor specifications and slant ranges between UAV and ground targets. It has an order of several tens to hundreds of meters for typical tactical UAV mission scenarios. In this paper, we propose a scheme that precisely acquires target coordinates from UAS by mapping image pixels to geographical coordinates based on GCP(Ground Control Points). This scheme was implemented and tested from ground control station for UAS. We took images of targets of which exact location is known and acquired the target coordinates using our proposed scheme. The experimental results showed that errors of the acquired coordinates remained within an order of several meters and the coordinates accuracy was significantly improved.

A Study on the Activity and its Influence of Pioneer Missionary in Korea Protestant Mission Architecture -(1) Focused on the Architectural Activities of Graham Lee- (한국미션건축에 있어서 개신교 개척선교사의 활동과 영향에 관한 연구 -(1) 그래함 리(Graham Lee)의 건축활동을 중심으로-)

  • Chung, Chang-Won
    • Journal of architectural history
    • /
    • v.13 no.2 s.38
    • /
    • pp.57-70
    • /
    • 2004
  • Since Korea disclaimed to open the ports, Korean architecture has met the impetuous transformation. Although there would be various factors of this transformation, the new-coming architecture by missionary seemed to be a significant one, and many researches have been carried out on this theme in diverse viewpoints. However, because these researches have preponderated on the Catholic tradition, it is deficient for clarify the whole history of mission architecture. Therefore, this research has the meaning to enrich the history of Korean modern architecture by making balance. First of all, this paper is focused on the activities of one missionary, Graham Lee. He is a practical missionary at the beginning, his architecture made a critical influence in Korean traditional architecture. Graham Lee was born in Rock Island, Illinois, 1861, and he determined to become a missionary through grown up. He spent his boyhood by working as a plumber for his purpose and studied in a university afterward. Graduating of McComick Theological Seminary, he was nominated as a pioneer of Pyeng Yang Mission Station and set foot in Korea, September of 1892. Since then he started to erect missionary facilities in Pyeng Yang, such as Well House(1898), Pyeng Yang Central Church(1900-1901), Pyeng Yang Academy(1902). These all his works are designed with eclectic style which shows western and Korean traditional style intermingled. This unique characteristic made a profound influence to the Korean mission architecture afterwards. Especially, the L-type plan of Pyeng Yang Central Church, which is first shown by him, is recognized very unique, and this plan type had been spread all over the country. Therefore the L-type plan became the peculiar feature of the early Korean churches. Furthermore, working with Korean carpenters, he taught them new skills of modem buildings. After that, they were expanded out northern part of Korea and took the roles of master builders. According to this expansion, his particular style had got spread and had been settled as a unique eclectic style in Korean modern architecture. In the conclusion, he is evaluated to be a critical pioneer missionary, who left a big influence on the frame work of Korean modern architecture in the transitional times.

  • PDF

The Earth-Moon Transfer Trajectory Design and Analysis using Intermediate Loop Orbits (중개궤도를 이용한 지구-달 천이궤적의 설계 및 분석)

  • Song, Young-Joo;Woo, Jin;Park, Sang-Young;Choi, Kyu-Hong;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.171-186
    • /
    • 2009
  • Various Earth-Moon transfer trajectories are designed and analyzed to prepare the future Korea's Lunar missions. Minimum fuel trajectory solutions are obtained for the departure year of 2017, 2020, 2022, and every required mission phases are analyzed from Earth departure to the final lunar mission orbit. N-body equations of motion are formulated which include the gravitational effect of the Sun, Earth and Moon. In addition, accelerations due to geopotential harmonics, Lunar J2 and solar radiation pressures are considered. Impulsive high thrust is assumed as the main thrusting method of spacecraft with launcher capability of KSLV-2 which is planned to be developed. For the method of injecting a spacecraft into a trans Lunar trajectory, both direct shooting from circular parking orbit and shooting from the multiple elliptical intermediate orbits are adapted, and their design results are compared and analyzed. In addition, spacecraft's visibility from Deajeon ground station are constrained to see how they affect the magnitude of TLI(Trans Lunar Injection) maneuver. The results presented in this paper includes launch opportunities, required optimal maneuver characteristics for each mission phase as well as the trajectory characteristics and numerous related parameters. It is confirmed that the final mass of Korean lunar explorer strongly depends onto the initial parking orbit's altitude and launcher's capability, rather than mission start time.

Development of CINEMA Mission Uplink Communication System

  • Yoon, Na-Young;Yoon, Se-Young;Kim, Yong-Ho;Yoon, Ji-Won;Jin, Ho;Seon, Jong-Ho;Chae, Kyu-Sung;Lee, Dong-Hun;Lin, Robert P.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.33-40
    • /
    • 2012
  • Triplet Ionospheric Observatory (TRIO) CubeSatforIon, Neutral, Electron MAgneticfields (CINEMA) is a CubeSat with the weight 3 kg that will be operated in the orbit conditions of about 800 km altitude and $90^{\circ}$ inclination angle, using the S-band and ultra-high frequency (UHF)-band communication frequencies. Regarding the communication antenna loaded on the satellite, the two patch antennas has the downlink function in the S-band, whereas the two whip antennas has the function to receive the command sent by the ground station to the satellite in the UHF-band. The uplink ground station that communicates through the UHF-band with the CINEMA satellite was established at Kyung Hee University. The system is mainly composed of a terminal node controller, a transceiver, and a helical antenna. The gain of the helical antenna established at the Kyung Hee University ground station was 9.8 dBi. The output of the transceiver was set to be 5 W (6.9 dB) for the communication test. Through the far-field test of the established system, it was verified that the Roman characters, figures and symbols were converted into packets and transmitted to the satellite receiver in the communication speed of 9,600 bps.

The Interface Test between LEO Satellite and Ground Station (저궤도위성과 지상국 간 접속 검증 시험)

  • Kwon, Dong-Young;Jung, Ok-Chul;Kim, HeeSub
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.49-56
    • /
    • 2012
  • LEO Satellite performs the operations and missions by FSW(Flight Software) after separation from a launch vehicle. Many of the operations by FSW are automatically conducted by the algorithms of FSW. In the case of the IAC(Initial Activation and Checkout) operations, a mission scheduling, an orbit transition, etc, however, a decision and a control of the satellite operators or manufacturers are required in order to operate the satellite safely. For this, the wireless communication channel between a satellite and a ground station should be prepared to receive telemetries and to transmit tele-commands for controlling FSW properly. Therefore, the verification of the interface between KOMPSAT-3 and a ground station is essential. This verification test is named the satellite end-to-end test. In this paper, we show the design process of the satellite end-to-end test and test results.

Link Margin Analysis on Telemetry for KSLV-I Launch (KSLV-1 발사를 위한 원격측정신호 Link Margin 분석)

  • Oh, Chang-Yul;Lee, Sung-Hee;Kim, Dong-Hyun;Kwon, Sun-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.105-112
    • /
    • 2009
  • Telemetry data is very important for the Launch Mission and Flight Safety Control during the Space Launch. In Naro Space Center, several telemetry stations such as a small station in the NARO space center, two stations in Jeju and a downrange station on a ship are deployed for the stable acquisition/receiving of the telemetry signals. In this paper, the Link Margin and Reliability for the telemetry are analyzed to evaluate the probability of the signal receiving of each station. Even though the proper analysis is to using the on-board EIRP(Effective Isotropic Radiation Power) values in the direction of the ground station considering the predicted flight trajectory and the locations of the stations, the global EIRP of 95% spatial coverage has been used for the analysis, due to the limitation of the available data.

  • PDF

Interference Analysis for Mutual Coexistence between Telemetry System based on IRIG Standard and Commercial LTE-TDD (IRIG 표준기반의 Telemetry 시스템과 상용 LTE-TDD간 상호공종을 위한 간섭분석)

  • Yun, Deok-Won;Choi, Joo-Pyoung;Lee, Won-Cheol;Kim, Chun-Won;Han, Jeong-Woo;Kim, Dae-Oh
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.512-521
    • /
    • 2017
  • Telemetry ground station use very high gain directional antenna systems that are sensitive to interference from other RF communication systems, Without appropriate interference protection, these systems could be severely impacted or even rendered useless for mission support. In ECC, we suggested ans interference analysis method between LTE-TDD system and telemetry ground station using 2.3GHz. In this paper, based on the interference analysis scenario considered in Electronic Communication Committee, We have derived mutual coexistence separation distance between telemetry ground station and LTE-TDD system(Base station, User equipment) in Spatial domain.

GEO-KOMPSAT-2 Laser Ranging Time Slot Analysis (정지궤도복합위성 레이저 레인징 가능 시간대 해석)

  • Park, Bongkyu;Choi, Jaedong;Lee, Sang-Ryool
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • In 2018 and 2019, GEO-KOMPSAT-2A and GEO-KOMPSAT-2B will be launched in order to succeed the COMS mission. The two satellites will be collocated in $128.25{\pm}0.05$ degrees East. For precise ranging and orbit determination, the GEO-KOMPSAT-2B will be equipped with LRA (Laser Retroreflector Assembly) and SLR (Satellite Laser Ranging) systems will be utilized. This systems are located in Geochang. In this case, the laser beam emitted from the SLR station can cause problems in terms of safety of optical payloads and image quality. As a solution of this possibility, the laser ranging will be done during the night time when the shutters of the optical payloads remain closed. Still, the optical payload of the GEO-KOMPSAT-2A is not safe from the laser beam because its optical payload shall continue its mission for 24 hours a day. In order to handle this problem, the laser ranging shall be limited to time slots when the angular distance between two satellites observed from the Geochang SLR station is large enough. In this paper, through orbit simulations, the characteristics of variation of the angular distance between the two satellites is analyzed to figure out the time slots when laser ranging is allowed.