We present penetration depth (PD) computation algorithms using explicit Minkowski sum construction ($PD_e$) and implicit Minkowski sum construction ($PD_i$). Minkowski sum construction is the most time consuming part in fast PD computation. In order to address this issue, we find a candidate solution using a centroid difference and motion coherence. Then, $PD_e$ constructs or updates partial Minkowski sum around the candidate solution. In contrast, $PD_i$ constructs only a tangent plane to the Minkowski sums iteratively. In practice, our algorithms can compute PD for complicated models consisting of thousands of triangles in a few milli-seconds. We also discuss the benefits of using different construction of Minkowski sums in the context of PD.
Korean Journal of Computational Design and Engineering
/
v.7
no.4
/
pp.269-279
/
2002
Geometric shape morphing is an interesting geometric operation that interpolates two geometric shapes to generate in-betweens. It is well known that Minkowski operations can be used to test and build collision-free motion paths and to modify shapes in digital image processing. In this paper, we present a new geometric modeling technique to control the morphing on geometric shapes based on Minkowski sum. The basic idea develops from the linear interpolation on two geometric shapes where the traditional algebraic sum is replaced by Minkowski sum. We extend this scheme into a Bezier-like control structure with multiple control shapes, which enables the interactive control over the intermediate shapes during the morphing sequence as in the traditional CAGD curve/surface editing. Moreover, we apply the theory of blossoming to our control structure, whereby our control structure becomes even more flexible and general. In this paper, we present mathematical models of control structure, their properties, and computational issues with examples.
Minkowski sum of two polyedra is an operation to compute the sum of all pairs of points contained in the polyhedra. It has been a very useful tool to solve many geometric problems arising in the areas of robotics, NC machining, solid modeling, and so on. However, very few algorithms have been proposed to compute Minkowski sum of polyhedra, because computing Minkowski sum boundaries is susceptible to roundoff errors. We propose an algorithm to robustly compute the Minkowski sum boundaries by employing the controlled linear perturbation scheme to prevent numerically ambiguous and degenerate cases from occurring. According to our experiments, our algorithm computes the Minkowski sum boundaries with the precision of $10^{-14}$ by perturbing the vertices of the input polyhedra up to $10^{-10}$.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.11
no.3
/
pp.37-41
/
2007
The semi-convexity for planar shapes has been recently introduced in [2]. As a generalization of the convextiy, semi-convexity is closed under the Minkowski sum. But the definition of semi-convexity requires that the shape boundary should satifisfy a differentiability condition $C^{1:1}$, which means that it should be possible to take the normal vector field along the domain's extended boundary. In view of the fact that the semi-convextiy is a most natural generalization of the convexity in many respects, this is a severe restriction for the semi-convexity, since the convexity requires no such a priori differentiability condition. In this paper, we generalize the semi-convexity to the closure of the class of semi-convex $\mathcal{M}$-domains for any Minkowski class $\mathcal{M}$, and show that this generalized semi-convexity is also closed under Minkowski sum.
Korean Journal of Computational Design and Engineering
/
v.17
no.4
/
pp.262-273
/
2012
We present a novel GPU algorithm to compute outer cell boundaries of 3D arrangement subdivided by a given set of triangles. An outer cell boundary is defined as a 2-manifold surface consisting of subdivided polygons facing outward. Many geometric problems, such as Minkowski sum, sweep volume, lower/upper envelop, Bool operations, can be reduced to finding outer cell boundaries with specific properties. Computing outer cell boundaries, however, is a very time-consuming job and also is susceptible to numerical errors. To address these problems, we develop an algorithm based on GPU with a robust scheme combining interval arithmetic and multi-level precisions. The proposed algorithm is tested on Minkowski sum of several polygonal models, and shows 5-20 times speedup over an existing algorithm running on CPU.
In this paper, we establish an equivalence form of the Brunn-Minkowski inequality for volume differences. As an application, we obtain a general and strengthened form of the dual $Kneser-S\ddot{u}ss$ inequality.
Korean Journal of Computational Design and Engineering
/
v.4
no.3
/
pp.259-268
/
1999
In order to reduce the cost of product and save the processing time, optimal nesting of two-dimensional part is an important application in number of industries like shipbuilding and garment making. There have been many studies on finding the optimal solution of two-dimensional nesting. The problem of two-dimensional nesting has a non-deterministic characteristic and there have been various attempts to solve the problem by reducing the size of problem rather than solving the problem as a whole. Heuristic method and linearlization are often used to find an optimal solution of the problem. In this paper, theoretical and practical nesting algorithm for rectangular, circular and irregular shape of two-dimensional parts is proposed. Both No-Fit-Polygon and Minkowski-Sum are used for solving the overlapping problem of two parts and the dynamic programming technique is used for reducing the number search spae in order to find an optimal solution. Also, nesting designer's expertise is complied into the proposed algorithm to supplement the heuristic method.
In this paper, we present a new kind of duality between intersection bodies and projection bodies. Furthermore, we establish some counterparts of dual Brunn-Minkowski inequalities for intersection bodies.
We study surfaces in Euclidean space which are obtained as the sum of two curves or that are graphs of the product of two functions. We consider the problem of finding all these surfaces with constant Gauss curvature. We extend the results to non-degenerate surfaces in Lorentz-Minkowski space.
Proceedings of the Korean Society of Precision Engineering Conference
/
1992.10a
/
pp.260-265
/
1992
본 논문에서는 민코스키 합의 기본개념에 기초해서 2D 공간에서 Convex 다각형뿐만 아니라 일반적인 형상의 다각형, 즉 concave 다각형과 폴리라인을 포함한 기본도형 들에 대한 민코스키 합을 구현해 보고 이 결과를 토대로 민코스키 합의 특성과 민코스키 합을 이용해서 물체를 모델링 할 때의 장점 및 문제점들을 알아보고자 한다. 또한 3D 공간으로의 확장시 고려해야할 요소들과 다른 자료에서 소개된 응용가능 분야 이외의 새로운 분야에서의 사용 가능성을 살펴본다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.