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INEQUALITIES FOR STAR DUALS OF INTERSECTION
BODIES

YUuaN JUN, ZHU HUAWEI, AND LENG GANGSONG

ABSTRACT. In this paper, we present a new kind of duality between in-
tersection bodies and projection bodies. Furthermore, we establish some

counterparts of dual Brunn-Minkowski inequalities for intersection bod-
ies.

1. Introduction

Intersection body and projection body are two basic concepts in geometric
tomography. The projection bodies have been the objects of intense investiga-
tion during the past three decades. Lutwak [6] introduced the mixed projection
bodies and studied them and their polar bodies systematically. The polar body
of a convex body is an important object in the context of convex geometry.
For example, two of the most important affine isoperimetric inequalities, the
Blaschke-Santald inequality and the Petty projection inequality, are closely re-
lated to the polar bodies. Hence, after we studied the mixed intersection bodies
[11], it is natural to consider the inequalities for their polar bodies. But the
intersection body of even a convex body generally is not convex, so is the mixed
intersection body. Thus the inequalities for the polar body of the intersection
body can not be given in the general cases.

In [7], Moszynska introduced the notion of the star dual of a star body.
Generally, star dual of a convex body is different from its polar dual. For every
convex body K, let K* and K° denote the polar body and the star dual of K,
respectively. It is easy to verify that (see [7] for the equality case)

K*CK°,
and K* = K° if and only if K is a centered ball.

In this paper, by applying the concept of star dual, we establish some in-
equalities for star duals of intersection bodies.
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As Lutwak [5] shows (and as is further elaborated in Gardner’s book [1]),
there is a kind of duality between intersection and projection bodies. For a
star body L, let IL denote the intersection body of L. For the star dual of
the mixed intersection body I(L,..., L,_1), we will write I°(L1,..., Ln—1),
rather than (I(L1,...,L,—1))°.

The first aim of this paper is to establish the following star dual of the
Busemann intersection inequality:

Theorem 1. Let Ly,...,L,_1 be star bodies in R™. Then

(1.1) V(Ll)...V(Ln_l)V(I°(L1,...,Lﬂ_l)) > (kil) )

with equality if and only if all L; are dilatates.

This is just a dual form of the general Petty projection inequality which was
given by Lutwak [6]:

Theorem 1*. Let K,,...,K,_1 be convez bodies in R™. Then

V(KL - V(Kn V(T (K1, . Kn1)) < <kf:) ,

with equality if and only if K; are homothetic ellipsoids.

For two star bodies K and L, let K+L, K+L denote the radial Blaschke
sum and the harmonic Blaschke sum of K and L, respectively. The other aim
of this paper is to establish the dual Brunn-Minkowski inequalities for the star
duals of the intersection bodies for the radial Blaschke sum and the harmonic
Blaschke sum.

Theorem 2. Let K, L be star bodies in R™. Then

(1.2) V(I°(KYL)"# > V(I°K)™ % + V(I°L)"*,

with equality if and only if L is a dilatate of K.

Theorem 3. Let K, L be star bodies in R™. Then

V(I°(K4L)) 7D . V{eK) "D V({I°L) "D
V(K+L) = V(K) V(L) ’

with equality if and only if L is o dilatate of K.

(1.3)

2. Basic definitions and notation

As usual, let B™ denote the unit ball in Euclidean n-space, R". While its
boundary is S™~! and the origin is denoted by o. If u is a unit vector, that is,
an element of S™~!, we denote by u* the (n — 1)-dimensional linear subspace
orthogonal to u.

For a compact subset L of R, with o € L, star-shaped with respect to o,
the radial function p(L,-) : S"~! — R, is defined by

(2.1) p(L,u) = pr(u) = max{\: du € L}.
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If p(L,-) is continuous and positive, L will be called a star body.

Let ¢} denote the set of star bodies in R™. Two star bodies K, L € 7 are
said to be dilatate (of each other) if p(K, u)/p(L, u) is independent of u € S™1 .

Also associated with a star body L € ¢? is its star dual L°, which was
introduced by Moszytiska [7] (and was improved in [8]). Let ¢ be the inversion
of R™\{0}, with respect to S~

x
i(x) = —.
]
Then the star dual L° of a star body L € ¢7 is defined by
L? = cl(R™\i(L)).

It is easy to verify that for every u € S™ ! [7],

1

(2.2) p(L%u) = ———.

(£%) p(L,w)
NLet L e ¢? i € R The dual volume XN/;(L) and dual quermassintegral
Wr—i(L) of L are defined by

~ — 1 ,

(2:3) VL) = WociD) = [ prfuydu
Sn—l

n
Let K € 7. The intersection body I K of K is a star body such that

(24)  prx(w) = Ao (K Nt = /S o e D),

n—1
where \; denote the i-dimensional volume.

Let Ki,...,Kn_1 € ¢7. The mixed intersection body I(Ky, ..., K,_1) of
star bodies Ky, ..., K, _1 is defined by

pI(K17“,7KnA1)(u) = E(Kl M U'L, KN ’U,L>
(2.5)

- dhn—2(v),
o1 o P L) (v)

where ¥ is (n-1)-dimensional dual mixed volume.

IfK1="': n—i—lZKyKn—iz"'z nﬁlzL,thenI(Kl,...,Kn_l)
will be denoted as I;(K, L). If K = B™, then I;(B™, L) is called the intersection
body of order 7 of L; it will often be written as I; K. Specially, I,, 1 L=IL. This
term was introduced by Zhang [13].

Let Ky,...,Kn_1 € ¢7. In accordance with (2.5), we define the ith mixed
intersection body IL;(K3,...,K,_1), by:

i i

(2.6) PI,-(Kl,...,Kn,l)(U) T -1 /Snﬂmul pln(:l (v) - 'plﬁl(”)d)‘n—Z(v)-

It follows that InAl(Kl, ey Kn_l)ZI(Kl, SN Kn—l) and Ii (K, ey K):IZK

The above elementary results (and definitions) are from the theory of convex
bodies. The reader may consult the standard works on the subject [1, 3, 10]
for reference.
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3. Counterparts of Busemann intersection inequality for star duals
of intersection bodies

In fact, we will establish the following inequality more general than Theo-
rem 1:

Theorem 3.1. Let Ly,...,L,_; € o7 and 1 <i<n—1. Then

n—1 s ki—(—l
(3.1) [[v@)=vE(Ly,. .. L)) > 72—,
j=1 n—1

with equality if and only if all L; are dilatates.
Remark 1. Taking i = n — 1 in Theorem 3.1, we obtain Theorem 1.
To prove Theorem 3.1, the following preliminary result will be needed:

Lemma 3.2. ([2]) Let L€ ¢ and 1 <i< j<n-—1. Then

62) (M) < (M) ,
7)) = \Ten

with equality if and only if L is a ball.

Lemma 3.3. Let L€ ¢? and 1 <i<n—1. Then

Koy
(33) V(LL) € V(D)

with equality if and only if L is a ball.

Proof. From the define of I; L, we have[13]

(3.4) pr.L(w) = vi(L Nub).
Then
1
van) = [ prd
S’n—l
n{n—1—4%) 1 _in_
<k, i1’ —/ prr(u)*=Tdu
2}1—1'517:)_1 i
< (kp_1kn) =T V(IL)==1
kp_ i
< k%_fV(L) .

The first inequality uses (3.4) and (3.2). The second inequality uses the
Holder integral inequality. By the equality conditions in Hélder integral in-
equality and Lemma 3.2, the equality in (3.3) holds if and only if L is a ball. O

Remark 2. The particular case of inequality (3.3) for i = n—1 is the well-known
Busemann intersection inequality.
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Lemma 3.4. ([12]) Let L € 7. Then
(3.5) V(L)V(L®) > k2,
with equality if and only if L is a ball.

Proof of Theorem 3.1. According to (2.6), (3.3) and the Holder integral in-
equality, we have

V(Li(La,...,Ly))

- PT(La,. Ln_y) (W)U

1 i i n
Lo (L i wana)) b
Sn—1 n— 1 Snflmuj‘ n

n—1 n
1 . n—1
/ [ < / PL, (v>d/\n—z(v)> du
gn—1 j n—1 gn—1ryL

1]

=1
n—1

H pIiLj (u)ﬁdu
n—1 =1

Sim= 3= 3|~3|=

T

S

i
L

1
n—1

V(LL,

IN
=

b
33

n-1
< kfll [Tvay)==.
j=1

3

To complete the proof of the inequality, it suffices to apply Lemma 3.4.
By the equality conditions of the Holder integral inequality, Lemma 3.3 and
Lemma 3.4, the equality in (3.1) holds if and only if L is a ball. O

Let Ly=---=L,_1=Landi=n—1in Theorem 3.1. We get
Corollary 3.5. Let L € 7. Then

kn \"
(3.6) V(L))" 'V(I°L) > ( - ) )
with equality if and only if L is a ball.

This is just a dual form of the Petty projection inequality which was given
by Petty [9]:

Theorem 3.5*. Let K be a convex body in R™. Then

(3.7) VEVarE) < (4 )

n—1

with equality if and only if K is an ellipsoid.

Let Ly =--- = L,,_1 = L in Theorem 3.1 we get
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Corollary 3.6. Let L € ¢ and 1 <i<n—1. Then

‘ i+1
(3.8) VLIVUEL) > 2

n—1

with equality if and only if L is a ball.

This is just a dual form of the general Petty projection inequality for ith
projection body which was given by Lutwak [6]:

Theorem 3.6*. Let K be a convex body in R™ and 1 <i<n—1. Then

, i+1
(3.9) VI VILK) < 2
n—1

with equality if and only if K is an ellipsoid.

4. The dual Brunn-Minkowski inequalities for star duals of
intersection bodies

For K,L € ¢ and A, u > 0, the radial Blaschke sum, A - K+p - L, was
defined by Lutwak [5]. Its radial function is given by:

(41) PN KFu- L) = Ap(K, )"~ + pp(L, )"
Obviously, radial Blaschke and Minkowski scalar multiplications are related by
A-K = \T1K,

For the radial Blaschke sum, we will prove a result more general than The-
orem 2.

Theorem 4.1. Let K,L € o7, 0<i<n and 0 < a <1. Then

1

= >W; [I°(0 K¥(1 — ) - L)] 77
+W; [I°(1-a) K¥a L) ™7,
with equality if and only if o.- K¥(1 —a) - L is a dilatate of (1 —a)- K+a- L.

Proof. For u € S"7!, from (2.4) and (4.1), we have
1
n—1 Sn—1nyd

wy G

p(I(N-Kip-Lu)= p(A- K¥p- L) Ldrn_a(v)

=X p(IK,u) + pp(IL,u).
Then, using (2.2} and the Minkowski integral inequality(¢ — n < 0), we have
Wi(I°(K¥L)) ==

n—i

F /S (KD, u)i“”duJ

n

1
n—i

[l /Sn_l (o(IK,w) + p(IL, u))i_;‘ du}

mn
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- [ (ntir

+(1 = a)p(IL,u) + (1 — a)p(IK,u) + ap(IL,u))" ™" du} —w

1

1 —n T n—1
= [; /Sn*l (pI[a~K-T‘(1*OL)-L](u) +P1[(1_a).K;a,L](U)) du}

1 ‘ o=
> | — . z—nd
= [n /Sn_l pI[a»K+(1—a)»L]<u)) U}

1 i—n nt
+ [E /571—1 pI[(l—a)‘KﬁT.a.L](u)) du]
:Wi [Io(a . K«T—(l - a) ~L)]—n_£7 + Wi [IO((l —a)- Kia- L)}_Tl—? .

From the equality conditions for the Minkowski integral inequality, the equal-
ity holds if and only if o - K4(1 — a) - L is a dilatate of (1 —a) - K+a-L. O
Taking o = 1 in Theorem 4.1, we get
Corollary 4.2. Let K,L € ¢ and 0 <i <n. Then
(4.3) Wi(I°(K¥L))" = > Wi(I°K) ™7 + Wi(I°L) "7,
with equality if and only if L is o dilatate of K.

Remark 3. As in the proof of Theorem 4.1, we have
(4.4)

1

W, [I°(a- K11 — a) - L)] 77 > aW;(I°K) ™77 + (1 — o) Wi(I°L) "7
(4.5)

?

1

W [I°((1— o) K+o- L)]_“_l‘—i > (1— )W (I°K) ™75 + aW;(I°L)" 7.
From (4.4) and (4.5), we get

Wi [1(c- K¥(1 = a) - L)] 7 + W, [I°((1 - a) - K¥a - L)] ™

> Wi(I°K) ™= + W;(I°L)~#=.
Hence, (4.2) is a stronger form of (4.3).

In [4], Lutwak introduced the harmonic Blaschke sum. Suppose K, L € ¢7.
To define the harmonic Blaschke sum, K+L, first define £ > 0 by

£/ (nt1)
(4.6) 1

“n / V(E) ™ p(K, )™+ + V(L) p(L,w)" 1D dS (w),
n Jgn—-1

The body K+L € ¢" is defined as the body whose radial function is given by
(47) €KL = V()T (K, )+ V(D) T (L)
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In fact, we will establish the following theorem more general than Theorem
3.

Theorem 4.3. Let K, L € ¢l and 0 <i<n—1. Then

Wi(I°(K L L)) Tt N W, (I°K) =D . Wi (I°L) T=6=D
V(K+L) - V(K) V(L) ’

(4.8)

with equality if and only if L is a dilatate of K.

Proof. By (4.6), (4.7) and the polar coordinate formula for volume, we get
¢ = V(K+L). Hence from (4.7), we obtain

(49)  V(K+L)"'p(K+L, )" = V(K) " p(K, )" + V(L) p(L, )"
For u € S"~L. By (2.4), (4.9), we have

p(I(K+ L), u)
I p(K+ L,v)" " dA,_s(v)

n—1 Sn—inyL

1 ~ n—1
— V(K+ L)+

Applying the Minkowski integral inequality(0 < 2= +1 < 1) and (2.4}, we have

0]
> ( (1K, )3 +V—zﬁ.p(IL’u)%;})" t
That is,
p(I(KFL),u) "% _ p(IK,u)"T  p(IL,u)"5
(4.10) VKTD) > =R + v

By the equality conditions of the Minkowski integral inequality, the equal-
ity of (4.10) holds if and only if V(K - p(K,)"! and ﬁ - p(L, )" are
proportional. That is, L is a dilatate of K.
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V(K+L +L
Let a = —‘(/,—(;(r—)) and b = %;—) The Minkowski integral inequality

n(:“;f) < 0) combined with (2.2) and (2.3), we have

Wi (I°(K L)) ™t=m

1 R } TSy
(3] UKL 0 ")
Sn—l

n

n4l
1 (i—n)(n=1) G=ny(n—1)

n Jgn-1

1 . (i—:)‘trlx.-—l)
a —/ p(IK, u)""du)
n Jjgn-1

1 . TWeTD
+b (— / p(IL, u)’“"du)
n Sn—1

= oW, (I°K) 01 4 bW;(I°L) T,

v

v

So the inequality (4.8) is proved. By the equality conditions for the Minkow-

ski integral inequality and (4.10), the equality in (4.8) holds if and only if L is
a dilatate of K. O
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