• Title/Summary/Keyword: minimal ideal

검색결과 125건 처리시간 0.023초

A STRUCTURE THEOREM FOR A CLASS OF GORENSTEIN IDEALS OF GRADE FOUR

  • Cho, Yong S.
    • 호남수학학술지
    • /
    • 제36권2호
    • /
    • pp.387-398
    • /
    • 2014
  • In this paper, we give a structure theorem for a class of Gorenstein ideal of grade 4 which is the sum of an almost complete intersection of grade 3 and a Gorenstein ideal of grade 3 geometrically linked by a regular sequence. We also present the Hilbert function of a Gorenstein ideal of grade 4 induced by a Gorenstein matrix f.

TRACE PROPERTIES AND INTEGRAL DOMAINS, III

  • Lucas, Thomas G.;Mimouni, Abdeslam
    • 대한수학회보
    • /
    • 제59권2호
    • /
    • pp.419-429
    • /
    • 2022
  • An integral domain R is an RTP domain (or has the radical trace property) (resp. an LTP domain) if I(R : I) is a radical ideal for each nonzero noninvertible ideal I (resp. I(R : I)RP = PRP for each minimal prime P of I(R : I)). Clearly each RTP domain is an LTP domain, but whether the two are equivalent is open except in certain special cases. In this paper, we study the descent of these notions from particular overrings of R to R itself.

DEPTHS OF THE REES ALGEBRAS AND THE ASSOCIATED GRADED RINGS

  • Kim, Mee-Kyoung
    • 대한수학회보
    • /
    • 제31권2호
    • /
    • pp.210-214
    • /
    • 1994
  • The purpose of this paper is to investigate the relationship between the depths of the Rees algebra R[It] and the associated graded ring g $r_{I}$(R) of an ideal I in a local ring (R,m) of dim(R) > 0. The relationship between the Cohen-Macaulayness of these two rings has been studied extensively. Let (R, m) be a local ring and I an ideal of R. An ideal J contained in I is called a reduction of I if J $I^{n}$ = $I^{n+1}$ for some integer n.geq.0. A reduction J of I is called a minimal reduction of I. The reduction number of I with respect to J is defined by (Fig.) S. Goto and Y.Shimoda characterized the Cohen-Macaulay property of the Rees algebra of the maximal ideal of a Cohen-Macaulay local ring in terms of the Cohen-Macaulay property of the associated graded ring of the maximal ideal and the reduction number of that maximal ideal. Let us state their theorem.m.m.

  • PDF

STRUCTURE OF THE FLAT COVERS OF ARTINIAN MODULES

  • Payrovi, S.H.
    • 대한수학회지
    • /
    • 제39권4호
    • /
    • pp.611-620
    • /
    • 2002
  • The aim of the Paper is to Obtain information about the flat covers and minimal flat resolutions of Artinian modules over a Noetherian ring. Let R be a commutative Noetherian ring and let A be an Artinian R-module. We prove that the flat cover of a is of the form $\prod_{p\epsilonAtt_R(A)}T-p$, where $Tp$ is the completion of a free R$_{p}$-module. Also, we construct a minimal flat resolution for R/xR-module 0: $_AX$ from a given minimal flat resolution of A, when n is a non-unit and non-zero divisor of R such that A = $\chiA$. This result leads to a description of the structure of a minimal flat resolution for ${H^n}_{\underline{m}}(R)$, nth local cohomology module of R with respect to the ideal $\underline{m}$, over a local Cohen-Macaulay ring (R, $\underline{m}$) of dimension n.

ON THE STRUCTURE OF A k-ANNIHILATING IDEAL HYPERGRAPH OF COMMUTATIVE RINGS

  • Shaymaa S. Essa;Husam Q. Mohammad
    • 대한수학회논문집
    • /
    • 제38권1호
    • /
    • pp.55-67
    • /
    • 2023
  • In this paper we obtain a new structure of a k-annihilating ideal hypergraph of a reduced ring R, by determine the order and size of a hypergraph 𝒜𝒢k(R). Also we describe and count the degree of every nontrivial ideal of a ring R containing in vertex set 𝒜(R, k) of a hypergraph 𝒜𝒢k(R). Furthermore, we prove the diameter of 𝒜𝒢k(R) must be less than or equal to 2. Finally, we determine the minimal dominating set of a k-annihilating ideal hypergraph of a ring R.

CHARACTERIZATIONS OF A KRULL RING R[X]

  • Chang, Gyu-Whan
    • 대한수학회보
    • /
    • 제38권3호
    • /
    • pp.543-549
    • /
    • 2001
  • We show that R[X] is a Krull (Resp. factorial) ring if and only if R is a normal Krull (resp, factorial) ring with a finite number of minimal prime ideals if and only if R is a Krull (resp. factorial) ring with a finite number of minimal prime ideals and R(sub)M is an integral domain for every maximal ideal M of R. As a corollary, we have that if R[X] is a Krull (resp. factorial) ring and if D is a Krull (resp. factorial) overring of R, then D[X] is a Krull (resp. factorial) ring.

  • PDF

ON FUZZY DIMENSION OF N-GROUPS WITH DCC ON IDEALS

  • Bhavanari, Satyanarayana;Kuncham, Syam Prasad;Tumurukota, Venkata Pradeep Kumar
    • East Asian mathematical journal
    • /
    • 제21권2호
    • /
    • pp.205-217
    • /
    • 2005
  • In this paper we consider the fuzzy ideals of N-group G where N is a near-ring. We introduce the concepts: minimal elements, fuzzy linearly independent elements, and fuzzy basis of an N-group G and obtained fundamental related results.

  • PDF

ALGORITHMS FOR FINDING THE MINIMAL POLYNOMIALS AND INVERSES OF RESULTANT MATRICES

  • Gao, Shu-Ping;Liu, San-Yang
    • Journal of applied mathematics & informatics
    • /
    • 제16권1_2호
    • /
    • pp.251-263
    • /
    • 2004
  • In this paper, algorithms for computing the minimal polynomial and the common minimal polynomial of resultant matrices over any field are presented by means of the approach for the Grobner basis of the ideal in the polynomial ring, respectively, and two algorithms for finding the inverses of such matrices are also presented. Finally, an algorithm for the inverse of partitioned matrix with resultant blocks over any field is given, which can be realized by CoCoA 4.0, an algebraic system over the field of rational numbers or the field of residue classes of modulo prime number. We get examples showing the effectiveness of the algorithms.

Where Some Inert Minimal Ring Extensions of a Commutative Ring Come from

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • 제60권1호
    • /
    • pp.53-69
    • /
    • 2020
  • Let (A, M) ⊂ (B, N) be commutative quasi-local rings. We consider the property that there exists a ring D such that A ⊆ D ⊂ B and the extension D ⊂ B is inert. Examples show that the number of such D may be any non-negative integer or infinite. The existence of such D does not imply M ⊆ N. Suppose henceforth that M ⊆ N. If the field extension A/M ⊆ B/N is algebraic, the existence of such D does not imply that B is integral over A (except when B has Krull dimension 0). If A/M ⊆ B/N is a minimal field extension, there exists a unique such D, necessarily given by D = A + N (but it need not be the case that N = MB). The converse fails, even if M = N and B/M is a finite field.

GRADED INTEGRAL DOMAINS IN WHICH EACH NONZERO HOMOGENEOUS IDEAL IS DIVISORIAL

  • Chang, Gyu Whan;Hamdi, Haleh;Sahandi, Parviz
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.1041-1057
    • /
    • 2019
  • Let ${\Gamma}$ be a nonzero commutative cancellative monoid (written additively), $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}$ $R_{\alpha}$ be a ${\Gamma}$-graded integral domain with $R_{\alpha}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma}$, and $S(H)=\{f{\in}R{\mid}C(f)=R\}$. In this paper, we study homogeneously divisorial domains which are graded integral domains whose nonzero homogeneous ideals are divisorial. Among other things, we show that if R is integrally closed, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is an h-local $Pr{\ddot{u}}fer$ domain whose maximal ideals are invertible, if and only if R satisfies the following four conditions: (i) R is a graded-$Pr{\ddot{u}}fer$ domain, (ii) every homogeneous maximal ideal of R is invertible, (iii) each nonzero homogeneous prime ideal of R is contained in a unique homogeneous maximal ideal, and (iv) each homogeneous ideal of R has only finitely many minimal prime ideals. We also show that if R is a graded-Noetherian domain, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is a divisorial domain of (Krull) dimension one.