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ON THE STRUCTURE OF A k-ANNIHILATING IDEAL

HYPERGRAPH OF COMMUTATIVE RINGS

Shaymaa S. Essa and Husam Q. Mohammad

Abstract. In this paper we obtain a new structure of a k-annihilating

ideal hypergraph of a reduced ring R, by determine the order and size of
a hypergraph AGk(R). Also we describe and count the degree of every

nontrivial ideal of a ring R containing in vertex set A(R, k) of a hyper-
graph AGk(R). Furthermore, we prove the diameter of AGk(R) must be

less than or equal to 2. Finally, we determine the minimal dominating

set of a k-annihilating ideal hypergraph of a ring R.

1. Introduction

In the last twenty years, the structure of finite commutative rings associated
graphs has been an intriguing issue that has been studied by some authors such
as [2], [6], [7] and [8]. According to [4], Eslahchi and Rahimi introduced and
studied a graph known as the k-zero divisor hypergraph of a commutative ring
R, which is defined as: Let R be a commutative ring and k ≥ 2 a fixed integer,
a nonzero nonunit element a1 in R is said to be a k-zero-divisor in R if there
exist k− 1 distinct nonunit elements a2, a3,. . . , ak in R different from a1 such
that a1 ·a2 ·a3 · . . . ·ak = 0 and the product of no elements of any proper subset
of A = {a1, a2, . . . , ak} is zero.

In [8], K. Selvakumar, V. Ramanathan have introduced a k-annihilating ideal
hypergraph of a commutative ring and defined as: Let R be a commutative ring
and let A(R, k) be the set of all k-annihilating ideals in R and k > 2 an integer.
The k-annihilating ideal hypergraph of R, denoted by AGk(R) is a hypergraph
with vertex set A(R, k) and for distinct elements I1, I2, . . . , Ik in A(R, k), the

set {I1, I2, . . . , Ik} is an edge of AGk(R) if and only if
∏k

i=1 Ii = (0) and the
product of (k − 1) element of {I1, I2, . . . , Ik} is nonzero. Clearly, if R is an
integral domain with A(R, k) = φ for all k ≥ 2, then AGk(R) = φ .

Throughout this paper we suppose R is a finite commutative ring with iden-
tity. One of the most significant structures of a finite commutative ring is that
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a ring R is a reduced ring if and only if R ∼= F1 × F2 × · · · × Fn, where Fi are
finite fields and 1 ≤ i ≤ n, we denote Jn−s = (F1×F2×· · ·×Fs×0×0×· · ·×0)
be any nontrivial ideal of a ring R with arbitrary s, where 2 ≤ s ≤ n− 1. We
Assume that k = 3 is a fixed integer in the definition of a k-annihilating ideal
hypergraph of R with the set of a nontrivial ideals Jn−s of a ring R; A(R, k)
as a vertex set of a hypergraph AGk(R).

A hypergraph H is a pair (V(H), E(H)) of disjoint sets, where V(H) is a
non-empty finite set whose elements are called vertices, and the number of
elements of V(H), is called order of hypergraph H; denote by n(H). Also the
elements of E(H) are nonempty subsets of V(H) called hyperedges and the
number of elements of hyperedges is called size of hypergraph H; denote by
m(H). While graph edges are pair of vertices, hyperedges are arbitrary sets of
vertices and can contain an arbitrary number of vertices. Special hypergraphs
called uniform hypergraph where all the hyperedges have the same cardinality.
The hypergraph H is called k-uniform if every edge e of H is of size k. The
number of edges containing a vertex v ∈ V(H) is its degree dH(v). A path
of length k from a vertex x1 to another vertex x2 in a hypergraph H is a
finite sequence of the form x1, E1, y1, E2, y2, . . . , Ek−1, yk−1, Ek, x2 such that
x1 ∈ E1 and yi ∈ Ei ∩ Ei+1 for i = 1, 2, . . . , k − 1 and x2 ∈ Ek. Let H be a
connected hypergraph. For u, v ∈ H(v), the distance between u and v is the
length of a shortest path from u and v in H, denoted by dH(u, v). In particular,
dH(u, u) = 0. The diameter of H is the maximum distance between all vertex
pairs of H (see [9]).

The hypergraph and algebraic properties have been covered by r-Stirling
numbers which were introduced by Broder [3] and were counted as restricted
partitions with the restriction being that the first r elements must be in distinct
subsets. Although let X be a finite set with n elements, then the partitions of X
which contain exactly k blocks are called k-partitions of X. The numbers of k-
partitions are denoted by

{
n
k

}
which are known as the regular Stirling numbers

of the second kind with some special values of them as
{
n
2

}
= 2n−1 − 1, and{

n
3

}
= 1

2 (3n−1 − 2n + 1) see [5].
Our aim in this paper is to determine some basic graphical properties of

a k-annihilating ideal hypergraph of a ring R, such as the order and size of
AGk(R), and to explain the degree of any nontrivial ideal of a ring R containing
in A(R, k) in Section 2. In Section 3, we find the diameter of AGk(R), which
differs from [9, Theorem 3.5], that is, diam(AGk(R)) ≤ 2. In addition, we
discover the minimal dominating set of AGk(R) of a ring R.

2. Basic properties of a k-annihilating ideal hypergraph of a ring R

Recall that A(R, k) is a set of all k-annihilating ideals in R, where k is an
integer; as a vertex set, and R ∼= F1×F2×· · ·×Fn , where Fi are finite fields for
1 ≤ i ≤ n. In this section, we obtain the properties of a set of vertices A(R, k),
and relate it to a k-annihilating ideal hypergraph of a ring R. Also we get more
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detailed explanation of the degree of every vertex of A(R, k). Furthermore, we
find the order and size of AGk(R).

Firstly, we instigate this section by getting the property of minimal ideals
of R.

Lemma 2.1. Let R be a ring and let Ii be a minimal ideal of R. Then Ii is
not contain in A(R, k).

Proof. Suppose that Ii is a k-annihilating ideal of R. Then there are k-
annihilating ideals as I1, I2, . . . , Ik such that the product of any (k − 1) ideals

of {I1, I2, . . . , Ik} is nonzero and
∏k

n=1 In = (0). Since Ii is a minimal ideal of
R, then for some j different from i; (0) 6= Ii · Ij ⊂ Ii implies that Ii · Ij = Ii,
that is contradiction; so Ii is not contain in A(R, k) . �

Theorem 2.2. Let R be a ring such that R ∼= F1×F2×· · ·×Fn, where Fi are
finite fields for 1 ≤ i ≤ n and let Jn−2 = (F1×F2×0×0×· · ·×0) be any ideal
of a ring R with randomly s, where 2 ≤ s ≤ n− 1. Then deg(Jn−2) =

{
n+1
1+3

}
3
,

where
{
n+1
1+3

}
3

is 3-Stirling number of the second kind.

Proof. Let R be a ring such that R ∼= F1 × F2 × · · · × Fn, where Fi are finite
fields for 1 ≤ i ≤ n and let Jn−2 be an ideal containing in A(R, k) such that
Fi’s are all zeros except F1 and F2, then the combination of zeros Fi are given
by
∑n−2

k=1

(
n−2
k

)
and every combination in this expansion has some exception,

so we can explained it by fixing F1 6= 0 and F2 = 0 for any ideal in A(R, k)
such L1 with combination of zeros Fi, and fixing F2 6= 0 and F1 = 0 for another
ideal in A(R, k), as L2 with combination of zeros Fi, therefore we conclude the
following general form for Jn−2 which possess randomly s, where 2 ≤ s ≤ n−1,
as

deg(Jn−2) =

(
n− 2

1

)( n−2∑
k=1

(
n− 2

k

)
−

n−3∑
k=1

(
n− 3

k

))
(1)

+

(
n− 2

2

)( n−2∑
k=1

(
n− 2

k

)
−

n−4∑
k=1

(
n− 4

k

))
+ · · ·

+

(
n− 2

n− 2

)( n−2∑
k=1

(
n− 2

k

)
−

n−(n−1)∑
k=1

(
n− (n− 1)

k

))
.

Observe the terms of
∑n−2

k=1

(
n−2
k

)
and simplified expansion (1) by using bino-

mial coefficients

deg(Jn−2) =

(
n− 2

1

)(
(2n−2 − 1)− (2n−3 − 1)

)
+

(
n− 2

2

)
(

(2n−2 − 1)− (2n−4 − 1)

)
+ · · ·
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+

(
n− 2

n− 2

)(
(2n−2 − 1)− (22−1 − 1)

)
,

deg(Jn−2) =

(
n− 2

1

)({
n− 1

2

}
−
{
n− 2

2

})
+

(
n− 2

2

)
({

n− 1

2

}
−
{
n− 3

2

})
+ · · ·+

(
n− 2

n− 2

)({
n− 1

2

}
−
{

2

2

})
,

deg(Jn−2) =

n−2∑
k=1

(
n− 2

1

)({
n− 1

2

}
−
{
n− k − 1

2

})

=

n−2∑
k=1

(
n− 2

1

){
n− 1

2

}
−

n−2∑
k=1

(
n− 2

1

){
n− k − 1

2

}

= (2n−2 − 1)(2n−2 − 1)−
n−2∑
k=1

(
n− 2

n− k − 2

)
(2n−k−2 − 1)

= (2n−2 − 1)2 −

(
n−2∑
k=0

(
n− 2

n− k − 2

)
(2n−k−2 − 1)− (2n−2 − 1)

)

= (2n−2 − 1)2 −

(
n−2∑
k=0

(
n− 2

n− k − 2

)
2n−k−2 −

n−2∑
k=0

(
n− 2

n− k − 2

))
+ (2n−2 − 1)

= 22(n−2) − 2 · 2n−2 + 1− 3n−2 + 2n−2 + 2n−2 − 1

= 22(n−2) − 3n−2,

(2) deg(Jn−2) = 4n−2 − 3n−2 = (1 + 3)(n+1)−3 − 3(n+1)−3.

That is, deg(Jn−2) =
{
n+1
1+3

}
3
, where

{
n+1
1+3

}
3

is 3-Stirling number of the second

kind. �

Theorem 2.3. Let R be a ring such that R ∼= F1×F2×· · ·×Fn, where Fi are
finite fields for 1 ≤ i ≤ n and let Js = (F1 × F2 × · · · × Fs × 0) be any ideal of
a ring R with randomly s, where 2 ≤ s ≤ n− 1. Then deg(Js) =

{
s+1
3

}
, where{

s+1
3

}
is regular Stirling number of the second kind.

Proof. Let R be a ring such that R ∼= F1 × F2 × · · · × Fn, where Fi are finite
fields for 1 ≤ i ≤ n and let Js = (F1×F2×· · ·×Fs×0) be any ideal containing
in A(R, k) such that F1 and F2 and . . . and Fs are nonzeros for 2 ≤ s ≤ n− 1.
Suppose Js, L1 and L2 are ideals of a ring R containing in A(R, k) such that
Js ·L1 6= (0), Js ·L2 6= (0) and L1 ·L2 6= (0), so F1 ×F2 × · · · ×Fs is not equal
to zero in L1 and L2. Now, to obtain Js · L1 · L2 6= (0), let Fs 6= 0 in L1 for
2 ≤ s ≤ n − 1, then Fs must be zeros in L2. For getting F1 6= 0 in L1, then
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F1 = 0 in L2 so, we can explain the number of cases of Js as

s−2∑
j=0

(
s− 1

j

)( s−j−1∑
k=1

(
s− j − 1

k

))
=

s−2∑
j=0

(
s− 1

j

)
(2s−j−1 − 1)

=

s−2∑
j=0

(
s− 1

s− j − 1

)
(2s−j−1 − 1)

=

s−1∑
j=1

(
s− 1

j

)
(2j − 1)

=

s−1∑
j=0

(
s− 1

j

)
(2j − 1)

=

s−1∑
j=0

(
s− 1

j

)
2j −

s−1∑
j=0

(
s− 1

j

)
,

(3)

s−2∑
j=0

(
s− 1

j

)( s−j−1∑
k=1

(
s− j − 1

k

))
= 3s−1 − 2s−1.

Also, fixed F1 = 0 and F2 6= 0 in L1, then F1 = F2 = 0 in L2, we get

s−3∑
j=0

(
s− 2

j

)( s−j−2∑
k=1

(
s− j − 2

k

))
=

s−3∑
j=0

(
s− 2

j

)
(2s−j−2 − 1)

=

s−3∑
j=0

(
s− 2

s− j − 2

)
(2s−j−2 − 1)

=

s−3∑
j=1

(
s− 2

j

)
(2j − 1)

=

s−2∑
j=0

(
s− 2

j

)
(2j − 1)

=

s−2∑
j=0

(
s− 2

j

)
2j −

s−2∑
j=0

(
s− 2

j

)
,

(4)

s−3∑
j=0

(
s− 2

j

)( s−j−2∑
k=1

(
s− j − 2

k

))
= 3s−2 − 2s−2.
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By continuing this process and using (3) and (4), for 1 ≤ t ≤ s − 1, we have
the degree of Js as

deg(Js) =

s−2∑
j=0

(
s− 1

j

)
(2s−j−1 − 1) +

s−3∑
j=0

(
s− 2

j

)
(2s−j−2 − 1)

+ · · ·+
s−i∑
j=0

(
s− i
j

)
(2s−j−i − 1)

= 3s−1 − 2s−1 + 3s−2 − 2s−2 + · · ·+ 31 − 21,

(5) deg(Js) =

s−1∑
t=1

(
s−t−1∑
j=0

(
s− t
j

)
(2s−j−t − 1)

)
,

deg(Js) =

s−1∑
t=1

(3s−t − 2s−t)

=

s−1∑
t=1

3s−t −
s−1∑
t=1

2s−t

=
1

2
(3s − 3)− (2s − 2)

=
1

2
(3s − 2s+1 + 1)

=

{
s+ 1

3

}
,

where
{
s+1
3

}
is regular Stirling number of second kind. �

Theorem 2.4. Let R be a ring such that R ∼= F1×F2×· · ·×Fn, where Fi are
finite fields for 1 ≤ i ≤ n and let Jn−s = (F1×F2×· · ·×Fs×0×0×· · ·×0) be
any ideal of a ring R with randomly s, where 2 ≤ s ≤ n−1. Then deg(Jn−s) ={
s+1
3

}{
n−s+3
1+3

}
3
.

Proof. Let R be a ring such that R ∼= F1 × F2 × · · · × Fn, where Fi are finite
fields for 1 ≤ i ≤ n and let Jn−s = (F1×F2× · · · ×Fs× 0× 0× · · · × 0) be any
ideal of R containing in A(R, k) for 2 ≤ s ≤ n− 1, by depending on expansion
(1) and (5), we can conclude the general formula for any ideal as a form, for
randomly s; Jn−s = (F1 × F2 × · · · × Fs × 0 × 0 × · · · × 0) without loss the
generality. So the proof is complete from Theorem 2.2 and Theorem 2.3. �

Theorem 2.5. Let R be a ring such that R ∼= F1×F2×· · ·×Fn, where Fi are
finite fields for 1 ≤ i ≤ n. Then n(AGk(R)) =

∑n−1
i=2

(
n
i

)
=
{
n+1
2

}
− (n + 1),

where
{
n+1
2

}
is regular Stirling number of the second kind.
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Proof. Let R be a ring such that R ∼= F1 × F2 × · · · × Fn, where Fi are finite
fields for 1 ≤ i ≤ n. Let J1, J2, . . . , Jn−1 are nontrivial distinct ideals in
A(R, k). Since R ∼= F1 ×F2 × · · · ×Fn for Fi are fields and for 1 ≤ i ≤ n, then
n(Jn−1) =

(
n
1

)
and n(Jn−2) =

(
n
2

)
and . . . and n(Js) =

(
n

n−1
)
. Since the set of

ideals of the form J1 are minimal by Lemma 2.1, then the order of AGk(R) is
expansion of

(
n
s

)
, where 2 ≤ s ≤ n− 1. That is,

n(AGk(R)) =

(
n

2

)
+ · · ·+

(
n

n− 1

)
(6)

=

n−1∑
s=2

(
n

s

)
.

By using regular Stirling number of the second kind, we obtain

n(AGk(R)) = 2n − n− 2

= (2n − 1)− (n+ 1)

=

{
n+ 1

2

}
− (n+ 1),

where
{
n+1
2

}
is regular Stirling number of the second kind. �

Theorem 2.6. Let R be a ring such that R ∼= F1 × F2 × · · · × Fn, where Fi

are finite fields for 1 ≤ i ≤ n. Then the size of hypergraph AGk(R) is equal to

m(AGk(R)) = 1
3 (
∑n−1

s=2

(
n
s

){
s+1
3

}{
n−s+3
1+3

}
3
).

Proof. Let A(R, k) be the set of all nontrivial k-annihilating ideals of R and

not minimal ideals, since the order of hypergraph of AGk(R) =
∑n−1

s=2

(
n
s

)
, since

k = 3, then there are three nontrivial ideals in A(R, k) contained in every edges
of AGk(R), that is,

m(E(AGk(R)))

=
1

3

((
n

2

)
deg(Jn−2) +

(
n

3

)
deg(Jn−3) + · · ·+

(
n

n− 1

)
deg(Js)

)
.

So, we can conclude the following

(7) m(E(AGk(R))) =
1

3

(
n−1∑
s=2

(
n

s

)
deg(Jn−s)

)
.

For more interpretation, we can rewrite (7) by using Theorem 2.4, as

m(E(AGk(R))) =
1

3

((
n

2

){
2 + 1

3

}{
n− 2 + 3

1 + 3

}
3

+

(
n

3

){
3 + 1

3

}{
n− 3 + 3

1 + 3

}
3

+ · · ·+
(

n

n− 1

){
n

3

}{
n− (n− 1) + 3

1 + 3

}
3

)
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=
1

3

(
n−1∑
s=2

(
n

s

){
s+ 1

3

}{
n− s+ 3

4

}
3

)
.

�

3. Adjacency property of a k-annihilating ideal hypergraph of
ring R

In this section, we study the idea of adjacency between the ideals of R
containing in A(R, k), where k = 3, that based on its, which found the diameter
and minimal dominating set of a k-annihilating ideal hypergraph of a ring R.

Theorem 3.1. Let R be a ring such that R ∼= F1×F2×· · ·×Fn, where Fi are
finite fields for 1 ≤ i ≤ n and let Jn−s = (F1×F2×· · ·×Fs×0×0×· · ·×0) be any
ideal of a ring R with randomly s, where 2 ≤ s ≤ n−1. Then diam(AGk(R)) ≤
2.

Proof. Let R be a ring such that R ∼= F1 × F2 × · · · × Fn, where Fi are finite
fields for 1 ≤ i ≤ n and let I = (Fi1 × Fi2 × · · · × Fis × 0× 0× · · · × 0) be any
ideal of a ring R containing in A(R, k) and Fij be a field in position ij . Our
purpose is to prove that diam(R) ≤ 2. It is enough to find a path between any
two ideals of R in AGk(R). So we must discuss these cases:

Case 1. Let I and J be any two ideals of R such that I ⊂ J or J ⊂ I,
without lost generality, let I ⊂ J , then there are two fields Fi1 and Fi2 in ij-th
position are nonzero in I and J also Fi3 is nonzero in J , but the i3-th position
is equal to zero in I. Furthermore; there are i4-th position are equal to zero in
I and J . Now let K1 = T1 × T2 × · · · × Tn be an ideal of R, where Ti ∈ {0, Fi}
such that

Ti =

{
Fi if i = i1, i3 or i4,

0 if otherwise

and K2 = T1 × T2 × · · · × Tn be an ideal of R such that

Ti =

{
Fi if i = i2 or i4,

0 if otherwise.

That is, I ·K1 ·K2 = (0) with I ·K1 6= (0), I ·K2 6= (0), K1 ·K2 6= (0) and
J · K1 · K2 = (0) with J · K1 6= (0), J · K2 6= (0), K1 · K2 6= (0). So we
conclude that; there are two hyperedges in AGk(R) known as e1 = {I,K1,K2}
and e2 = {J,K1,K2}. Then diam(I, J) = 2.

Case 2. Again, let I and J be any two ideals of R such that I · J = (0).
Then Fi1 and Fi2 be two fields in ij-th position are nonzero in I, and Fi3 and
Fi4 be two fields in ij-th position are nonzero in J . Also the i3-th position and
i4-th position are equal to zero in I, but i1-th position and i2-th position are
equal to zero in J .
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Now let L1 = T1 × T2 × · · · × Tn be an ideal of R, where Ti ∈ {0, Fi} such
that

Ti =

{
Fi if i = i1, i3 or i4,

0 if otherwise

and L2 = T1 × T2 × · · · × Tn be an ideal of R such that

Ti =

{
Fi if i = i2, i = i3 or i4,

0 if otherwise,

also let L3 = T1 × T2 × · · · × Tn be an ideal of R, such that

Ti =

{
Fi if i = i1, i2 or i4,

0 if otherwise.

Therefore, I · L1 · L2 = (0) with I · L1 6= (0), I · L2 6= (0), L1 · L2 6= (0) and
J ·L1 ·L3 = (0) with J ·L1 6= (0), J ·L3 6= (0), L1 ·L3 6= (0), that is, there are
two hyperedges in E(AGk(R)) known as e1 = {I, L1, L2} and e2 = {J, L1, L3},
which are explained that diam(I, J) = 2.

Case 3. At least, let I and J be any two ideals of R such that I ·J 6= (0) and
I 6⊂ J , and J 6⊂ I. Then there are Fi1 and Fi2 are two fields in ij-th position
are nonzero in I and Fi1 , Fi3 are two fields in ij-th position are nonzero in J .
Also the i3-th position is equal to zero in I, with i2-th position is equal to zero
in J .

Now let N = T1 × T2 × · · · × Tn be an ideal of R, where Ti ∈ {0, Fi} such
that

Ti =

{
Fi if i = i2 or i3,

0 if otherwise

since I ·J 6= (0), by assumption we get I ·N 6= (0), J ·N 6= (0), so I ·N ·J = (0).
That is, there is exactly one hyper edge containing I and J . So diam(I, J) =
2. �

Corollary 3.2. Let R be a ring and R ∼= F1 × F2 × · · · × Fn, where Fi are
finite fields for 1 ≤ i ≤ n and let I and J be two nontrivial ideals containing
in A(R, k) such that I · J 6= (0) and I 6⊂ J (J 6⊂ I). Then there is another
nontrivial ideal as K in A(R, k), different from I and J , that is, {I, J,K} is
contained in E(AGk(R)).

According to [1], Acharya introduced the dominating set and minimal dom-
inating set in hypergraphs as an extension of basic results from the theory of
domination in graphs, which defined as:

Definition. Let (V(H), E(H)) be any hypergraph. Then, D(H) ⊂ (V(H) is
an adominating set of H if for every v ∈ V(H)−D(H), there exists u ∈ D(H)
such that u and v are adjacent in H; that is, if there exists E ∈ E such that
u, v ∈ E. Furthermore, D(H) ⊂ (V(H) is a minimal dominating set of H if
D(H) does not contain proper dominating set.
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Theorem 3.3. Let R be a ring and R ∼= F1×F2×· · ·×Fn, where Fi are finite
fields for 1 ≤ i ≤ n. Then

(i) If n is even, then the dominating set of a k-annihilating hypergraph of
AGk(R) is defined as D(AGk(R)) = {D1, D2, . . . , Dn

2
, Dn

2 +1, }, where
D1 = (F1×F2×0×· · ·×0), D2 = (0×0×F3×F4×0×· · ·×0), Dn

2
=

(0×· · ·×0×Fn−1×Fn), Dn
2 +1 = (F1×0×F3×0×F5×· · ·×Fn−1×0).

(ii) If n is odd, then the dominating set of a k-annihilating hypergraph of
AGk(R) is defined as D(AGk(R)) = {D1, D2, . . . , Dn−1

2
, Dn+1

2
, Dn+3

2
},

where D1 = (F1 × F2 × 0× · · · × 0), D2 = (0× 0× F3 × F4 × 0× · · · ×
0), Dn−1

2
= (0 × · · · × 0 × Fn−2 × Fn−1 × 0), Dn+1

2
= (0 × · · · × 0 ×

Fn−2 × Fn−1 × Fn), Dn+3
2

= (F1 × 0× F3 × 0× F5 × 0× · · · × 0× Fn).

Proof. Let R be a ring and R ∼= F1 × F2 × · · · × Fn, where Fi are finite fields
for 1 ≤ i ≤ n and let I be an ideal of a ring R containing in A(R, k) such that
I ∈ A(R, k)−D(AGk(R)).

(i) If n is even, we instigate to show that D(AGk(R)) is a dominating set of
AGk(R).

Firstly, we observe an axiom, if Dj ⊂ I for all 1 ≤ j ≤ n
2 , then we have

I = R, which contradicts the assumption. Also if I ⊂ Dj , then we get I is a
minimal ideal of R, so by Lemma 2.1, that any minimal ideal is not a vertex in
A(R, k). Hence there exists Dj in D(AGk(R)) such that Dj 6⊂ I(I 6⊂ Dj) for
some 1 ≤ j ≤ n

2 . Furthermore, if Dn
2 +1 · I = 0, then there exist two nonzero

even positions as Fi1 and Fi2 in I, so there is Dj in D(AGk(R)) such that
satisfied the conditions of Corollary 3.2.

Secondly, we investigate Dn
2 +1, when Dn

2 +1 ⊂ I or I ⊂ Dn
2 +1.

If Dn
2 +1 ⊂ I, since there exists Dj ∈ D(AGk(R)) such that Dj 6⊂ I(I 6⊂ Dj)

for some 1 ≤ j ≤ n
2 and Dj = (0 × · · · × 0 × Fi1 × Fi1+1 × 0) for a nonzero

odd position as Fi1 and a nonzero even position as Fi1+1 with Dn
2 +1 ⊂ I, then

we get Dj · I 6= 0. Therefore, Corollary 3.2, involves that; there is another
nontrivial ideal as K in A(R, k), different from I and Dj , that is, {I,Dj ,K} is
contained in E(AGk(R)).

If I ⊂ Dn
2 +1, there are two nonzero odd positions as Fi1 and Fi3 in I.

Therefore if Fi1 in Dj for some 1 ≤ j ≤ n
2 , then Fi3 is not in Dj , also Fi3 is

in Dj but not in I, which implies that Dj · I 6= 0 and Dj 6⊂ I(I 6⊂ Dj), thus
the conditions of Corollary 3.2, satisfied and there is another nontrivial ideal
as K in A(R, k), different from I and Dj , that is, {I,Dj ,K} is contained in
E(AGk(R)).

Moreover, we discuss, if Dj ⊂ I for some 1 ≤ j ≤ n
2 . Then either Dj · I = 0

or Dj ⊂ I for all 1 ≤ j ≤ n
2 . Thus we obtain Dn

2 +1 · I 6= 0 and Dn
2 +1 6⊂ I(I 6⊂

Dn
2 +1). That is, there is another nontrivial ideal as K in A(R, k), different

from I and Dj , that is, {I,Dn
2 +1,K} is contained in E(AGk(R)).

Finally, we discuss the instances of Dj · I = 0 for some 1 ≤ j ≤ n
2 + 1.
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If Dn
2 +1 · I = 0, then there are two nonzero even positions as Fi2 and Fi4 in

I such that Dj · I 6= 0 for some 1 ≤ j ≤ n
2 , and DjI(IDj). Thus by Corollary

3.2, that is, there is another nontrivial ideal as K in A(R, k), different from I
and Dj , that is, {I,Dj ,K} is contained in E(AGk(R)).

If Dj · I = 0 for some 1 ≤ j ≤ n
2 , then obviously, Dn

2 +1 6⊂ I and so
Dn

2 +1 · I = 0, therefore, by last confirmation, there is Di with i 6= j such
that Di · I 6= 0 and Di 6⊂ I(I 6⊂ Di), hence by Corollary 3.2, there is another
nontrivial ideal as K in A(R, k), different from I and Dj , that is, {I,Di,K} is
contained in E(AGk(R)).

Similarly, if Dj · I = 0 for some 1 ≤ j ≤ n
2 , then, may be; I ⊂ Dn

2 +1, which
is explained in secondly instance, so {I,Dn

2 +1,K} is contained in E(AGk(R))
for some K in A(R, k).

Again, if Dn
2 +1 · I 6= 0 with I 6⊂ Dn

2 +1(Dn
2 +1 6⊂ I), so there is a hyperedge

as {I,Dn
2 +1,K} is contained in E(AGk(R)). Therefore for all cases there is an

ideal in D(AGk(R)) adjacent with I.
(ii) If n is odd, we begin to show that D(AGk(R)) is a dominating set of

AGk(R), in the same way that (i), then Dj is discussed for all 1 ≤ j ≤ n−1
2 , as

well as Dn+3
2

. It is sufficient to show that Dn+1
2

is contained in D(AGk(R)).

Now, we suppose, if Dn+1
2
⊂ I, then I = (T1×T2×· · ·×Tn−3×Fn−2×Fn−1×Fn)

is an ideal containing in A(R, k), where Ti are not all zeros such that Ti ∈
{0, Fi} for i = 1, 2, . . . , n − 3, then there is Dn+3

2
in D(AGk(R)) such that

Dn+3
2
· I 6= 0 and Dn+3

2
6⊂ I(I 6⊂ Dn+3

2
), so by Corollary 3.2, {I,Dn+1

2
,K} is

contained in E(AGk(R)) for some K in A(R, k).
Moreover, if I ⊂ Dn+1

2
, then I = (0 × · · · × 0 × Fn−1 × Fn) or I = (0 ×

· · · × 0× Fn−2 × 0× Fn) is contained in A(R, k), implying that; I is adjacent
to Dn−1

2
that is contained in a hyperedge of E(AGk(R)).

At last, we suppose, if Dn−1
2
·I = 0, then I = (T1×T2×· · ·×Tn−3×0×0×0),

where Ti are not all zeros such that Ti ∈ {0, Fi} for i = 1, 2, . . . , n−3, contained
in A(R, k), so there is Dj in D(AGk(R)) for 1 ≤ j ≤ n−1

2 such that Dj · I 6= 0
and Dj 6⊂ I(I 6⊂ Dj), so by Corollary 3.2, {I,Dj ,K} is contained in E(AGk(R))
for some K in A(R, k). �

Theorem 3.4. Let R be a ring and R ∼= F1×F2×· · ·×Fn, where Fi are finite
fields for 1 ≤ i ≤ n. Then the dominating set D(AGk(R)), which is defined in
Theorem 3.3, (i) and (ii) is a minimal.

Proof. Let R be a ring and let R ∼= F1×F2×· · ·×Fn, where Fi are finite fields
for 1 ≤ i ≤ n.

(i) Assume that, n is even, we instigate to show that

D(AGk(R)) = {D1, D2, . . . , Dn
2
, Dn

2 +1}
is a minimal dominating set ofAGk(R). Now let D(AGk(R))−D1 be a dominat-
ing set of AGk(R), and suppose that I = (F1×0×F3×F4×· · ·×Fn) be an ideal
containing in A(R, k), then there is no Dj in D(AGk(R))−D1 for 2 ≤ j ≤ n

2 +1,
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adjacent to I in a hyperedge of AGk(R); such that I 6⊂ Dj(Dj 6⊂ I) and
Dj · I 6= 0. Thus D1 must be contained in D(AGk(R)). To continuing for all
D(AGk(R))−Dj , where 2 ≤ j ≤ n

2 , there is an ideal I not adjacent with every
ideals of D(AGk(R))−Dj .

Also, if we get D(AGk(R)) − Dn
2 +1 a dominating set of AGk(R), and for

I = (F1×F2×F3×F4× 0×· · ·×0) containing in A(R, k), then there is no Dj

in D(AGk(R))−Dn
2 +1 for 1 ≤ j ≤ n

2 , adjacent to I in a hyperedge of AGk(R).
Thus Dn

2 +1 must be contained in D(AGk(R)). Therefore, D(AGk(R)) must be
a minimal dominating set.

(ii) Suppose that, n is odd, according to the same method and a same as-
sumption as in (i), we show that D(AGk(R))={D1, D2, . . . , Dn−1

2
, Dn+1

2
, Dn+3

2
}

is minimal, so we only need to prove that Dn+1
2

is a minimal dominating set

containing in D(AGk(R)). Let us now continue D(AGk(R))−Dn+1
2

is a domi-

nating set of AGk(R), and assume that I = (F1 × 0 × F3 × F4 × · · · × Fn) be
an ideal containing in A(R, k). Then there is no Dj in D(AGk(R))−Dn+1

2
for

1 ≤ j ≤ n+3
2 , adjacent to I in a hyperedge of AGk(R). Thus Dn+1

2
must be

contain in D(AGk(R)). �

References

[1] B. D. Acharya, Domination in hypergraphs, AKCE Int. J. Graphs Comb. 4 (2007), no. 2,

117–126.

[2] M. Behboodi and R. Beyranvand, On the structure of commutative rings with pk1
1 · · · p

kn
n

(1 ≤ ki ≤ 7) zero-divisors. II, Eur. J. Pure Appl. Math. 3 (2010), no. 4, 686–694.

[3] A. Z. Broder, The r-Stirling numbers, Discrete Math. 49 (1984), no. 3, 241–259. https:
//doi.org/10.1016/0012-365X(84)90161-4

[4] Ch. Eslahchi and A. M. Rahimi, The k-zero-divisor hypergraph of a commutative ring,

Int. J. Math. Math. Sci. 2007 (2007), Art. ID 50875, 15 pp. https://doi.org/10.1155/
2007/50875

[5] I. Mezo, Combinatorics and number theory of counting sequences, CRC Press, 2019.

[6] D. A. Mojdeh and A. M. Rahimi, Dominating sets of some graphs associated to commu-
tative rings, Comm. Algebra 40 (2012), no. 9, 3389–3396. https://doi.org/10.1080/

00927872.2011.589091

[7] M. Nazim, J. Nisar, and N. ur Rehman, On domination in zero-divisor graphs of rings
with involution, Bull. Korean Math. Soc. 58 (2021), no. 6, 1409–1418. https://doi.

org/10.4134/BKMS.b200968

[8] K. Selvakumar and V. Ramanathan, The k-annihilating-ideal hypergraph of commuta-

tive ring, AKCE Int. J. Graphs Comb. 16 (2019), no. 3, 241–252. https://doi.org/10.

1016/j.akcej.2019.02.008

[9] V. I. Voloshin, Introduction to Graph and Hypergraph Theory, Nova Science Publishers,

Inc., New York, 2009.

Shaymaa S. Essa

Department of Mathematics
Duhok University

Duhok 42001, Kurdistan Region, Iraq

Email address: shaymaa.essa@uod.ac

https://doi.org/10.1016/0012-365X(84)90161-4
https://doi.org/10.1016/0012-365X(84)90161-4
https://doi.org/10.1155/2007/50875
https://doi.org/10.1155/2007/50875
https://doi.org/10.1080/00927872.2011.589091
https://doi.org/10.1080/00927872.2011.589091
https://doi.org/10.4134/BKMS.b200968
https://doi.org/10.4134/BKMS.b200968
https://doi.org/10.1016/j.akcej.2019.02.008
https://doi.org/10.1016/j.akcej.2019.02.008


ON THE STRUCTURE OF A k-ANNIHILATING IDEAL HYPERGRAPH 67

Husam Q. Mohammad

Department of Mathematics

Mosul University
Mosul 41002, Iraq

Email address: husamqm@uomosul.edu.iq


