DOI QR코드

DOI QR Code

ON THE STRUCTURE OF A k-ANNIHILATING IDEAL HYPERGRAPH OF COMMUTATIVE RINGS

  • Shaymaa S. Essa (Department of Mathematics Duhok University) ;
  • Husam Q. Mohammad (Department of Mathematics Mosul University)
  • Received : 2021.12.21
  • Accepted : 2022.06.15
  • Published : 2023.01.31

Abstract

In this paper we obtain a new structure of a k-annihilating ideal hypergraph of a reduced ring R, by determine the order and size of a hypergraph 𝒜𝒢k(R). Also we describe and count the degree of every nontrivial ideal of a ring R containing in vertex set 𝒜(R, k) of a hypergraph 𝒜𝒢k(R). Furthermore, we prove the diameter of 𝒜𝒢k(R) must be less than or equal to 2. Finally, we determine the minimal dominating set of a k-annihilating ideal hypergraph of a ring R.

Keywords

References

  1. B. D. Acharya, Domination in hypergraphs, AKCE Int. J. Graphs Comb. 4 (2007), no. 2, 117-126.
  2. M. Behboodi and R. Beyranvand, On the structure of commutative rings with $p^{k_1}_1{\cdots}p^{k_n}_n(1{\leq}k_i{\leq}7)$ zero-divisors. II, Eur. J. Pure Appl. Math. 3 (2010), no. 4, 686-694.
  3. A. Z. Broder, The r-Stirling numbers, Discrete Math. 49 (1984), no. 3, 241-259. https://doi.org/10.1016/0012-365X(84)90161-4
  4. Ch. Eslahchi and A. M. Rahimi, The k-zero-divisor hypergraph of a commutative ring, Int. J. Math. Math. Sci. 2007 (2007), Art. ID 50875, 15 pp. https://doi.org/10.1155/2007/50875
  5. I. Mezo, Combinatorics and number theory of counting sequences, CRC Press, 2019.
  6. D. A. Mojdeh and A. M. Rahimi, Dominating sets of some graphs associated to commutative rings, Comm. Algebra 40 (2012), no. 9, 3389-3396. https://doi.org/10.1080/00927872.2011.589091
  7. M. Nazim, J. Nisar, and N. ur Rehman, On domination in zero-divisor graphs of rings with involution, Bull. Korean Math. Soc. 58 (2021), no. 6, 1409-1418. https://doi.org/10.4134/BKMS.b200968
  8. K. Selvakumar and V. Ramanathan, The k-annihilating-ideal hypergraph of commutative ring, AKCE Int. J. Graphs Comb. 16 (2019), no. 3, 241-252. https://doi.org/10.1016/j.akcej.2019.02.008
  9. V. I. Voloshin, Introduction to Graph and Hypergraph Theory, Nova Science Publishers, Inc., New York, 2009.