• Title/Summary/Keyword: milling type

Search Result 319, Processing Time 0.024 seconds

Storage characteristics of milled rice according to milling system types (백미 제조방식에 따른 저장특성)

  • Kim, Oui-Woung;Kim, Hoon;Han, Jae-Woong;Lee, Hyo-Jai
    • Food Science and Preservation
    • /
    • v.21 no.3
    • /
    • pp.308-314
    • /
    • 2014
  • The storage characteristics of milled rice produced using the dry-type (DT), semi-dry-type (SDT), and wet-type (WT) systems were studied. Immediately after rice was milled with these systems, storage experiments on the milled rice were conducted for 12 weeks at three temperatures (10, 20, and $30^{\circ}C$). As the storage period increased, the color (b value) and the fat acidity slowly increased, and the whiteness, moisture content, turbidity, solid matter, and number of total bacteria decreased. The effects of the storage temperature on the moisture content, total number of bacteria, and fat acidity were greater than those of the milling system type. The high storage temperature showed greater potential for increasing the moisture content and the fat acidity and decreasing the total number of bacteria. The initial moisture content of the sample produced using the WT milling system was higher than that of the other samples. Also, the initial turbidity and solid matter of the WT system sample were lower than those of the other samples, but the degree of the decrease was similar to that of the others as the storage period passed. These results showed that the system type and the storage temperature are important factors in the safe storage of wash-free rice. Specifically, the wet type milling system affected the initial quality properties, which made its safe storage period shorter than in the other types.

NC Tool Paths Program Development for the Pocket Machining (포켓 가공을 위한 NC 공구경로의 프로그램 개발)

  • Oh, Seon;Kwon, Young-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-81
    • /
    • 2003
  • Pocket machining is metal removal operation commonly used for creating depressions in machined parts. Numerically controlled milling is the primary means for machining complex die surface. These complex surfaces are generated by a milling cutter which removes material as it traces out pre-specified tool paths. To machine, a component on a CNC machine, part programs which define the cutting tool path are needed. This tool path is usually planned from CAD, and converted to a CAM machine input format. In this paper I proposed a new method for generating NC tool paths. This method generates automatically NC tool paths with dynamic elimination of machining errors in 2$\frac{1}{2}$ arbitrary shaped pockets. This paper generates a spiral-like tool path by dynamic computing optimal pocket of the pocket boundary contour based on the type and size of the milling cutter, the geometry of the pocket contour and surface finish tolerance requirements. This part programming system is PC based and simultaneously generates a G-code file.

A Pole-Assignment ACC System in the Peripheral End Milling Process (엔드밀링 공정에서 극점배치 구속적응제어 시스템)

  • Chung, Sung-Chong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.63-72
    • /
    • 1996
  • In order to regulate the cutting force at a desired level during peripheral end milling processes a feedrate override Adaptive Control Constraint (ACC) system was developed. The feedrate override function was accomplished through a development of programmable machine controller (PMC) interface technique on the NC controller, Nonlinear model of the cutting process was linearized as an adaptive model with a time varying process parameter. An integral type estimator was introduced for on-line estimation of the cutting process parameter, Zero order hold digital control methodology which uses pole-assignment concept for tuning of PI controllers was applied for the ACC system. Performance of the ACC system wsa confirmed on the vertical machining center equipped with fanuc OMC through a large amount of experiment.

  • PDF

Specific Cutting Force Coefficients Modeling of End Milling by Neural Network

  • Lee, Sin-Young;Lee, Jang-Moo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.622-632
    • /
    • 2000
  • In a high precision vertical machining center, the estimation of cutting forces is important for many reasons such as prediction of chatter vibration, surface roughness and so on. The cutting forces are difficult to predict because they are very complex and time variant. In order to predict the cutting forces of end-milling processes for various cutting conditions, their mathematical model is important and the model is based on chip load, cutting geometry, and the relationship between cutting forces and chip loads. Specific cutting force coefficients of the model have been obtained as interpolation function types by averaging forces of cutting tests. In this paper the coefficients are obtained by neural network and the results of the conventional method and those of the proposed method are compared. The results show that the neural network method gives more correct values than the function type and that in the learning stage as the omitted number of experimental data increase the average errors increase as well.

  • PDF

Prediction of Surface Roughness through Measuring Runout in High-speed Ball-End Milling (고속 볼엔드밀가공에서 회전오차의 측정을 통한 표면거칠기 예측에 관한 연구)

  • 김병국;이기용;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.889-893
    • /
    • 1997
  • In this study the runout of spindle is selected as a parameter through which we could measure the machinability of machine and the quality of products. We experimented the effects of runout on surface roughness in high-speed ball-end milling by cutting HP4M workpiece in various cutting condition. It was founs that sunout makes a directive effects on surface roughness and the frequensy type of runout is more or loss similar with that of surface roughness. So the predcition of surface roughness could be possible through measuring the spindle runout.

  • PDF

Measurement Technique of Cutting Temperatures Using Implanted Thermocouples in Ball End-Milling (볼 엔드밀링에서 열전대를 이용한 절삭온도 측정법)

  • Lee, Deuk-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1748-1752
    • /
    • 2000
  • In this paper, the measurement technique of cutting temperatures of shear zone using implanted thermocouples is proposed in ball end milling. K-type thermocouple implanted in the hole of workpieces is directly cut in order to measure temperatures of the shear zone in cutting process. Experiments are performed for a nickel based superalloy(Inconel 718) using a ball nose end mill. The results show that the cutting temperature in shear zone is about 3200C at the cutting speed of 90m/min with dry.

Improvement of Mg-based Hydrogen Storage Alloys by Mechanochemical Ball Milling (기계화학적 볼밀링을 이용한 Mg 합금의 수소저장능 향상 연구)

  • 안중호;최영묵
    • Journal of Powder Materials
    • /
    • v.9 no.2
    • /
    • pp.83-88
    • /
    • 2002
  • The mechanochemical milling of Mg and $Mg_2Ni$ alloys were carried out to examine the enhancement of hydrogen storage properties of Mg alloys. The hydroge characteristics of the ball-milled products were evaluated with a Sievert-type apparatus and electrochemical test. Various intermediate compounds were obtained by chemical reactions induced during the ball milling of Mg of $Mg_2Ni$ alloys with C, Ni, $Ni_2Cl$ and $Ca_2Cl$. The system of $Mg_2Ni$ with 10 wt% C improved markedly the kinetics of hydrogen absorption, while the hydrogen capacities were practically unchanged. The hydrogen storage alloys such as Mg-Ca can be successfully.

Fabrication of Nano-sized Titanate Powder via a Polymeric Steric Entrapment Route and Planetary Milling Process

  • Lee, Sang-Jin;Lee, Chung-Hyo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.336-340
    • /
    • 2002
  • Pure and nano-sized $TiO_2$ and $CaTiO_3$ powders were fabricated by a polymeric steric entrapment route and planetary milling process. An ethylene glycol was used as a polymeric carrier for the preparation of organic-inorganic precursors. Titanium isopropoxide and calcium nitrate were dissolved in liquid-type ethylene glycol without any precipitation. At the optimum amount of the polymer, the metal cations were dispersed in solution and a homogeneous polymeric network was formed. The dried precursor ceramic gels were turned to porous powders through calcination process. The porous powders were crystallized at low temperatures and the crystalline powders were planetary milled to nano size.

Experimental Investigations on Micro End-milling Cutting Characteristics Comparison and Tool Wear Behavior of AlN-hBN Composites Sintered by Hot-pressing (열간가압소결에 의해 제조된 AlN-hBN 복합재료의 마이크로 엔드밀링 절삭특성 비교와 공구마모에 관한 실험적 연구)

  • Beck, Si-Young;Shin, Bong-Cheol;Cho, Myeong-Woo;Cho, Won-Seung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.104-111
    • /
    • 2008
  • The objective of this study is to evaluate micro end-milling characteristics and tool wear behavior of AlN-hBN composites. First, AlN based composites with hBN contents in the range of 10 to 20vol% were prepared by hot-pressing. Vickers hardness and flexural strength of the prepared composite specimens were measured and compared according to the vol% of hBN variations. Then, cutting force variations were measured and analyzed using a tool dynamometer during the micro end-milling experiments; and machined surface shapes and roughness were investigated using a 3D non-contact type surface profiler. After micro end-milling, worn tools were investigated using a tool microscope and SEM images. From the experimental results, it can be observed that the cutting forces decreased, and surface qualities were improved with increasing hBN contents. At low content of hBN, tool chipping was observed; and tool wear rate decreased with increasing hBN contents. The results of this study insist that proper machining conditions, including tool wear behavior investigation, should be determined for the micro end-milling of AlN-hBN composites for its further application.

Effect of Processing Parameters in Surface Machining of Plastic Materials (플라스틱 소재의 표면가공 중 공정조건의 영향)

  • Han, Chang Mo;Lee, Bong-Kee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.1-7
    • /
    • 2016
  • In the present study, a plastic surface end-milling was implemented to investigate the effects of processing parameters on surface quality. The end milling can be considered an efficient method for rapid prototyping of thermoplastic bio-systems since it exhibits several beneficial functions including short fabrication time and high dimensional accuracy. In this regard, putative biocompatible thermoplastic materials, such as PMMA, PET, and PC, were chosen as workpiece materials. Among the relevant processing parameters influencing the surface quality of the final product, depth of cut, feed rate, and spindle speed were considered in the present study. The roughness of surfaces machined under various conditions was measured to elucidate the effect of each parameter. We found that the cut depth was the most significant factor. Heat generation during machining also had a remarkable effect. From these investigations, an appropriate combination of processing conditions specific to each type of use and end-product could be found. This optimization can be useful in end-milling of thermoplastic bio-systems.