• Title/Summary/Keyword: millimeter wave communications

Search Result 86, Processing Time 0.018 seconds

Development of Ceramic Filter Using Non Radiative Microstrip Line In Millimeter-Wave (비방사 마이크로 스트립 선로를 이용한 밀리미터 대역의 세라믹 필터 개발)

  • Shin, Cheon-Woo;Kim, Tae-Heon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.648-656
    • /
    • 2007
  • This paper is about band pass filter, using Ceramics in the condition of center frequency 370Hz at milli-wave. The band pass filter is applied to Broadband Convergence Network, representing WLL(Wireless Local Loop) and LMDS(Local Multi-point Distribution Service). Sticking ceramic between strip line on a dielectric material substrate with which conductor's covers upper and basal surface, One will house the exterior by using structural resonance. In this Non Radiative Microstrip Line Filter structure, based upon simulations, generalized the two formulas finding resonant frequency of 1step ceramic resonator and bandwidth of 4step ceramic resonator. Also, As a result of experiment, using Network Analyzer, about created a experiment of structure based on the simulation result of 4-step ceramic resonator, It showed good characteristic of targeted bandwidth, comparing simulated result of 36.58GHz$\sim$37.650GHz with experimented result of 36.6GHz$\sim$37.65GHz.

Design of a 28GHz 8-Directional Switched Beamforming Antenna System Utilizing Butler Matrix (버틀러 매트릭스 기반 28GHz 8-방향 스위칭 빔포밍 안테나 시스템 설계)

  • Shin, Sungjin;Shin, Hyunchol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.11-17
    • /
    • 2017
  • In this paper, an 8-direction switched beamforming antenna system at 28GHz frequency band is described for 5th generation wireless communication. This system is composed of an $8{\times}8$ Butler matrix and an 8-element patch array antenna. The antenna system switches beams in 8-direction in the wide range of ${\pm}40^{\circ}$. The antenna spacing is $0.65{\lambda}$ to achieve ${\pm}40^{\circ}$ steering range. Designed results show that the 8-direction beams are placed at ${\pm}6^{\circ}$, ${\pm}17^{\circ}$, ${\pm}28^{\circ}$, ${\pm}40^{\circ}$ offset from the center. Parasitic radiation effect from the large dimension Butler matrix need to be suppressed by employing a stripline structure.

AlGaAs/InGaAs/GaAs PHEMT power PHEMT with a 0.2 ${\mu}{\textrm}{m}$ gate length for MIMIC power amplifier. (MIMIC 전력증폭기에 응용 가능한 0.2 ${\mu}{\textrm}{m}$ 이하의 게이트 길이를 갖는 전력용 AlGaAs/InGaAs/GaAs PHEMT)

  • 이응호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.365-371
    • /
    • 2002
  • In this paper, the fabricated power PHEMT devices for millimeter-wave that is below a gate-length of 0.2 $\mu\textrm{m}$ using electronic beam lithography technologies, and the DC and frequency characteristics and an output power characteristics were Measured at the various bias conditions. The unit process that is used in PHEMT's manufacture used that low-resistance ohmic contact, air-bridge and back-side lapping process technologies, and so on. The fabricated power PHEMT have an S521 gain of 4 dB and a maximum transconductance(gm) of 317 mS/mm, an unilateral current gain(fT) of 62 GHz, a maximum oscillation frequency(fmax) of 120 GHz at 35 GHz, and a maximum power output(Pmax) of 16 dBm, a power gain(GP) of 4 dB and a drain efficiency(DE) of 35.5 %.

A Study on the Design of Ku-band Mixer Using a HEMT (HEMT를 이용한 Ku-band 혼합기의 설계에 관한 연구)

  • 성혁제;구자건
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.7
    • /
    • pp.944-950
    • /
    • 1993
  • Diodes and GaAs have been commonly used in a mixer design until recently. However, diodes are not preferred to use at the front-end of DBS receiver due to the conversion loss large noise. HEMT has larger conversion gain and better noise characteristics comparing with GaAs MESFET. This paper describes the design procedure, structure, and performance of a mixer, utilizaing HEMT designed by OKI Co. . A mixer configuration in which the local oscillator(LO) signal is applied to the gate is used. When the LO power is 0.01 dBm, the conversion gain of 3.7dB is obtained at IF and the 3 dB bandwidth is 400MMz.

  • PDF

Uplink Frequency Offset Compensation Scheme for High-Speed Moving Terminals (고속 이동체를 위한 상향링크 주파수 옵셋 보상 방법)

  • Choi, Sung-woo;Kim, Ilgyu;Ahn, Jae Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1699-1709
    • /
    • 2015
  • Moving terminals like high-speed-train undergo high Doppler frequency shift, and this leads to carrier frequency offsets that have to be compensated to avoid degradation of communication performance. In multiple access mechanism like OFDMA, base-stations need complex hardware to compensate the uplink frequency offset. In this paper, we propose a method, which can reduce burden of the base-station and makes frequency offset estimation and compensation simple. This method contains transmitting new synchronization signal, estimating frequency offsets in base-station, transmitting feedback information to terminal, and compensating the offset in uplink transmission. Simulation results show the proposed method operates well in high Doppler frequency shift conditions of 500 km/h which is the requirements of 5G mobile communication.

60 GHz CMOS SoC for Millimeter Wave WPAN Applications (차세대 밀리미터파 대역 WPAN용 60 GHz CMOS SoC)

  • Lee, Jae-Jin;Jung, Dong-Yun;Oh, Inn-Yeal;Park, Chul-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.670-680
    • /
    • 2010
  • A low power single-chip CMOS receiver for 60 GHz mobile application are proposed in this paper. The single-chip receiver consists of a 4-stage current re-use LNA with under 4 dB NF, Cgs compensating resistive mixer with -9.4 dB conversion gain, Ka-band low phase noise VCO with -113 dBc/Hz phase noise at 1 MHz offset from 26.89 GHz, high-suppression frequency doubler with -0.45 dB conversion gain, and 2-stage current re-use drive amplifier. The size of the fabricated receiver using a standard 0.13 ${\mu}m$ CMOS technology is 2.67 mm$\times$0.75 mm including probing pads. An RF bandwidth is 6.2 GHz, from 55 to 61.2 GHz and an LO tuning range is 7.14 GHz, from 48.45 GHz to 55.59 GHz. The If bandwidth is 5.25 GHz(4.75~10 GHz) The conversion gain and input P1 dB are -9.5 dB and -12.5 dBm, respectively, at RF frequency of 59 GHz. The proposed single-chip receiver describes very good noise performances and linearity with very low DC power consumption of only 21.9 mW.