• Title/Summary/Keyword: milled rice recovery rate

Search Result 23, Processing Time 0.022 seconds

Effect of Thresher Drum-Speed on the Quality of the Milled Rice (탈곡기의 급동 속도가 도정 손실에 미치는 영향)

  • Chung, Chang Joo;Koh, Hak Kyun;Lee, Chong Ho;Kang, Hwa Seug
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.9-9
    • /
    • 1979
  • It is understood that drum speed of threshers and the moisture content of paddy grains to be threshed, respectively, have a signific:mt effect upon rice recoveries. Threshing under an increased drum speed would give a high performance rate, which is the general practice in custom work threshing in association with the use of semiauto-t hreshers. In the connection, however, it may result in the promotion of grain cracks and brokens of the rice product after milling. No reference or determination for an opti mum drum speed of the thresher is made available for various grain moisture contents at the time of the threshing operation and for different rice varieties especially for the Tongil rice varieties. This study was Conducted to find out and determine effects of the drum speeds on grain losses. The grain loss was quantified in terms of recovery rates of rice grains after treatments. Samples of each of all treatments were taken from the grain sampling plate placed in the grain conveyor of threshers. The grain sample plate was specially provided for this experiment. The brown-rice, milling, and head-rice recJveries were tes ted in the laboratory mill, respectively. Two rice varieties, Akibare and Suweon 251, each with five levels of different moist?ure contents at harvest and six levels of different drum speeds of threshers, were selected and used for treatments in this experiment. Two conditions of materials were tested in the thresher. One condition was to thresh the experimental material immediately after cutting, referred to as the wet-material thr eshing in this study. The other was to thresh the experimental :material, dried to contain about 15-16 percent of the grain moisture under the shocking operation. This is referred to as the dry-material threshing in this study. In additioon, field measurements for the grain moistures and drum-sdeeds under actual operation practices of the traditional field threshing, were conducted with a view to comparing with results of the experimental treatments. The results of the study may be summarized as follows: 1. For threshing treatments of Japonica-type rice variety (Akibare) , the effect of drum speeds and levels of grain moisture at cutting upon brown-rice, milling, and head-rice recoveries were found statistically significant. No significant difference in these recovery rates was noticed regardless of whether the material was threshed right after cutting or after drying by the shocking operation. 2. For the Tongil-sister rice variety(Suweon 251), milling recovery for the varied drum-speed and the grain~moisture level at cutting was found statististically significant. Th milling recovery was much significant when associated with the wet-material thres?hing compared to the dry-material threshing. 3. The optimum peripheral velocity to be maintained at the edge of teeth on the thr?esher drum was determined and may be recommanded as that of about 12 to 13 meters per second in view of the maximum recovery rate of the milled rice. 4. The effect of the drum speed on the qualitative loss of the milled rice was much greater in the case of the Tongil variety than Japonica. This effect was also greater by the wet-material threshing than by the dry-material threshing. Therefore, to apply the wet-material threshing operation for the Tongil variety, in particular, it should be very important to introduce the kind of threshing technology which would maintain the drum speed at optimum. 5. A field survey for the actual drum speed of threshing operations for 50 threshers indicated that average peripheral velccity was 12.76m/sec., and that the range was from 10.50 to 14.90m/sec. Approximately, more than 30% of the experimented and measured threshers were being operated at speeds which exceeded the optimum speed determined and assessed in this study. Accordingly, it should be highly desirable and important to take counter-measures against these threshing practices of operational overspeed.

Composition in Milling Recovery Ratio of Rice Cultivars, Ilpumbyeo and Chucheongbyeo (일품벼와 추청벼의 도정률 차이의 작물학적 요인분석)

  • Kim, Deog-Su;Kim, Sun-Lim;Song, Jin;Hur, On-Suk;Kim, Jung-Tae;Lee, Choon-Ki;Kim, Jae-Hyun;Kim, Kee-Jong;Suh, Sae-Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.3
    • /
    • pp.308-313
    • /
    • 2008
  • This study was carried out to analysis the factor effected by milling rice rate, and to provide the developing rice varieties and cultivation technology. Panicle numbers per spike of Ilpumbyeo and Chucheongbyeo were 105 and 70, respectively. The primary branch panicle rate was Ilpumbyeo 56.2% and Chucheongbyeo 61.4%. The secondary panicle rate of Ilpumbyeo and Chucheongbyeo was 43.3% and 37.9%, respectively. Grain filling rate using specific gravity showed that Ilpumbyeo was the lower filling rate than Chucheongbyeo. Hull weight per one grain was Ilpumbyeo 41.9 mg and Chucheongbyeo 3.92 mg, and hull weight per rough rice 1 kg was Ilpumbyeo 157.36 g and Chucheongbyeo 151.31 g. In milling rate, brown rice ratio by ripening degree of llpumbyeo and Chucheongbyeo with combine harvest was 81.22% and 82.52%. Milled/brown rice ration of llpumbyeo and Chucheongbyeo showed 92.14% and 92.51%. The milling recovery ratio of llpumbyeo was decreased 1.67% then Chucheongbyeo, and the difference was mainly due to the hull weight (0.61%), milled/brown rice ratio (0.37%) and ripening degree (0.69%). Although the varietal differences were found in hull weight and millied/brown rice ratio between llpumbyeo and Chucheongbyeo, the ripening degree was considered as the factor that could be reduced by cultivation technology and post-harvest management.

Managing Within-Field Spatial Yield Variation of Rice by Site-Specific Prescription of Panicle Nitrogen Fertilizer

  • Ahn Nguyen Tuan;Shin Jin Chul;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.238-246
    • /
    • 2005
  • Rice yield and protein content have been shown to be highly variable across paddy fields. In order to characterize this spatial variability of rice within a field, two-year experiments were conducted in 2002 and 2003 in a large-scale rice field of $6,600m^2$ In year 2004, an experiment was conducted to know if variable rate treatment (VRT) of N fertilizer, that was prescribed for site-specific management at panicle initiation stage, could reduce spatial variation in yield and protein content of rice while increasing yield compared to conventional uniform N topdressing (UN, 33kg N/ha at PIS) method. VRT nitrogen prescription for each grid was calculated based on the nitrogen (N) uptake (from panicle initiation to harvest) required for target rice protein content of $6.8\%$, natural soil N supply, and recovery of top-dressed N fertilizer. The required N uptake for target rice protein content was calculated from the equations to predict rice yield and protein content from plant growth parameters at panicle initiation stage (PIS) and N uptake from PIS to harvest. This model· equations were developed from the data obtained from the previous two-year experiments. The plant growth parameters for the calculation of the required N were predicted non-destructively by canopy reflectance measurement. Soil N supply for each grid was obtained from the experiment of year 2003, and N recovery was assumed to be $60\%$ according to the previous reports. The prescribed VRT N ranged from 0 to 110kg N/ha with an average of 57kg/ha that was higher than 33 kg/ha of UN. The results showed that VRT application successfully worked not only to reduce spatial variability of rice yield and protein content but also to increase rough rice yield by 960kg/ha. The coefficient of variation (CV) for rice yield and protein content was reduced significantly to $8.1\%$ and $7.1\%$ in VRT from $14.6\%$ and $13.0\%$ in UN, respectively. And also the average protein content of milled rice in VRT showed very similar value of target protein content of $6.8\%$. In conclusion the procedure used in this paper was believed to be reliable and promising method for reducing within-field spatial variability of rice yield and protein content. However, inexpensive, reliable, and fast estimation methods of natural N supply and plant growth and nutrition status should be prepared before this method could be practically used for site-specific crop management in large-scale rice field.

Adaptable Tropical Japonica High quality New Rice Cultivar 'Japonica 6' (열대지역 적응 고품질 자포니카 벼 신품종 'Japonica 6')

  • Jeong, O-Young;Torollo, Gideon;Bombay, Maurene;Baek, Man-Kee;Ahn, Eok-keun;Hyun, Woong-Jo;Park, Hyun-Su;Jeong, Jong-Min;Cho, Jun-Hyeon;Lee, Jeong-Heui;Yeo, Un-Sang;Lee, Jeom-Sig;Jeong, Eung-Gi;Kim, Choon-Song;Suh, Jung-Pil;Kim, Bo-Kyeong;Lee, Jeom-Ho
    • Journal of the Korean Society of International Agriculture
    • /
    • v.31 no.3
    • /
    • pp.249-254
    • /
    • 2019
  • 'Japonica 6' is a japonica rice variety developed from a cross between 'MS11', the beginning variety adaptable to tropical region, and 'IR86743-28-1-4', an elite line of high yield and good plant type by a Korea(RDA)-IRRI cooperative breeding program at IRRI in 2017. The growth duration of 'Japonica 6' is 121 days from sowing to harvest. It is 10 days later than that of the check variety 'MS11'. The culm length of 'Japonica 6' is 70 cm, and 1,000-brown rice grain weight is 26.7 g. It has a shorter culm and a larger grain. size than that of MS11. 'Japonica 6' is moderately resistant to blast disease but susceptible to bacterial blight, tungro virus and plant hoppers. The milled rice recovery rate of 'Japonica 6' is improved than that of 'MS11'. The head rice rate of 'Japonica 6' is significantly higher than that of 'MS11'. Yield of 'Japonica 6' is averagely 3.59 MT/ha of milled rice in 5 areas of the Philippines. The 'Japonica 6' was registered in Philippines and would be adaptable to the diverse regions of tropical Asia (Registration No in Philippines. BPI-NSIC-2017-Rc 484SR).

Anaylsis of ${\gamma}$-aminobutyric Acid (GABA) Content in Germinated Pigmented Rice (발아 유색미의 GABA(${\gamma}$-aminobutyric acid) 함량 분석)

  • An, Mi-Kyoung;Ahn, Jun-Bae;Lee, Sang-Hwa;Lee, Kwang-Geun
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.632-636
    • /
    • 2010
  • The level of ${\gamma}$-aminobutyric acid (GABA) in pigmented rice was quantitatively and qualitatively determined by high pressure liquid chromatography/fluorescence detection (HPLC/FLD). In this study, the recovery rate and limit of detection (LOD) of GABA were 122.4${\pm}$2.4% and 0.23 ${\mu}g/g$, respectively. The geminating pigmented rice samples, which were harvested in Paju, Korea, were soaked in water at $18^{\circ}C$ for 20 hr. After soaking, the samples were germinated at $30^{\circ}C$ for about 24 hr. GABA content was highest (293.0 ${\mu}g/g$) in the germinated red rice. Furthermore, GABA levels in the germinated rice increased significantly by up to 11.1 and 24.7-fold as compared to non-germinated rice and milled rice, respectively. The GABA concentrations of non-germinated rice, with the exception of red rice, were significantly higher than those of milled rice by 7.6-20.6-fold.

A Medium-Maturing, Good Quality and Multiple Disease Resistance Japonica Rice Variety 'Migwang' (중부지방 적응 고품질 중생 복합내병성 벼 신품종 '미광')

  • Kim, Myeong-Ki;Cho, Young-Chan;Kim, Yeon-Gyu;Hong, Ha-Cheol;Choi, Im-Soo;Hwang, Hung-Goo;Oh, Myung-Kyu;Kim, Jeong-Ju;Choi, Yong-Hwan;Baek, Man-Kee;Lee, Jeom-Ho;Jeong, Jong-Min;Choi, In-Bea;Yoon, Mi-Ra;Roh, Jae-Hwan;Ahn, Eok-Keun
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.302-306
    • /
    • 2010
  • 'Migwang' is a new japonica rice variety developed from a cross between SR15926-10-2-3-3-3 having a good canopy architecture and multiple disease resistance, and Iksan431 having a translucent milled rice and good eating-quality with a view of developing a new variety having multiple disease resistance by the rice breeding team at NICS, RDA in 2009. The heading date of this variety is August 15 and later than check variety, Hwaseongbyeo, by four days. 'Migwang' has 75 cm of culm length and 98 spikelets per panicle. This variety showed longer heading delay and higher spikelet sterility than those of Hwaseongbyeo while exposed to cold stress. This variety showed resistance to blast disease and bacterial leaf blight, but susceptible to rice stripe virus and planthoppers. The milled rice of this variety exhibits translucent, clear non-glutinous endosperm and short grain shape. 'Migwang' has better palatability index of cooked rice than that of Hwaseongbyeo. The whole grain rate of milled rice and milled rice recovery of 'Migwang' are higher than those of Hwaseongbyeo as 96.8% and 73.1%, respectively. 'Migwang' has 5.5 MT/ha in milled rice. 'Migwang' could be adaptable to the middle plain area, mid-western and southeastern costal areas and mid-mountainous areas in Korea.

A Wide Region of Tropical Asia Adaptable Japonica Rice 'Asemi' (아시아 광지역 적응성 자포니카 벼 '아세미')

  • Jeong, Eung-Gi;kang, Kyeong-Ho;Hong, Ha-Cheol;Cho, Young-Chan;Jung, O-Young;Jeon, Yong-Hee;Chang, Jae-Ki;Lee, Jeom-Ho;Won, Yong-Jae;Yang, Un-Ho;Jung, Kuk-Hyun;Yeo, Un-Sang;Kim, Bo-Kyeong
    • Journal of the Korean Society of International Agriculture
    • /
    • v.31 no.1
    • /
    • pp.76-81
    • /
    • 2019
  • 'Asemi' is a rice variety derived from a cross between 'Jinmibyeo' which has translucent milled rice and medium maturity and 'Cheolwon46', an elite line with high yield and early maturity by the rice breeding team at NICS, RDA in 2013. The heading date of 'Asemi' is August 1, six days earlier than the check variety 'Hwaseong'. It has 82 cm culm length and 109 spikelets per panicle. 'Asemi' is resistant to blast disease, stripe virus and tungro virus, but susceptible to other viruses and planthoppers. The milled rice of this variety exhibits translucent, clear non-glutinous endosperm and short grain shape. It has protein content (6.7%) higher than 'Hwaseong', and amylose content (19.5%) similar to 'Hwaseong'. The milled rice recovery rate of 'Asemi' is similar to that of 'Hwaseong'. However, the head rice rate of 'Asemi' is higher than that of 'Hwaseong'. Milled rice yield of 'Asemi' is 5.23 MT/ha in ordinary cultivation. ' Asemi' could be adaptable to the wide region of tropical Asia (Registration No. 5639).

Determining Nitrogen Topdressing Rate at Panicle Initiation Stage of Rice based on Vegetation Index and SPAD Reading (유수분화기 식생지수와 SPAD값에 의한 벼 질소 수비 시용량 결정)

  • Kim Min-Ho;Fu Jin-Dong;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.386-395
    • /
    • 2006
  • The core questions for determining nitrogen topdress rate (Npi) at panicle initiation stage (PIS) are 'how much nitrogen accumulation during the reproductive stage (PNup) is required for the target rice yield or protein content depending on the growth and nitrogen nutrition status at PIS?' and 'how can we diagnose the growth and nitrogen nutrition status easily at real time basis?'. To address these questions, two years experiments from 2001 to 2002 were done under various rates of basal, tillering, and panicle nitrogen fertilizer by employing a rice cultivar, Hwaseongbyeo. The response of grain yield and milled-rice protein content was quantified in relation to RVIgreen (green ratio vegetation index) and SPAD reading measured around PIS as indirect estimators for growth and nitrogen nutrition status, the regression models were formulated to predict PNup based on the growth and nitrogen nutrition status and Npi at PIS. Grain yield showed quadratic response to PNup, RVIgreen around PIS, and SPAD reading around PIS. The regression models to predict grain yield had a high determination coefficient of above 0.95. PNup for the maximum grain yield was estimated to be 9 to 13.5 kgN/10a within the range of RVIgreen around PIS of this experiment. decreasing with increasing RVIgreen and also to be 10 to 11 kgN/10a regardless of SPAD readings around PIS. At these PNup's the protein content of milled rice was estimated to rise above 9% that might degrade eating quality seriously Milled-rice protein content showed curve-linear increase with the increase of PNup, RVIgreen around PIS, and SPAD reading around PIS. The regression models to predict protein content had a high determination coefficient of above 0.91. PNup to control the milled-rice protein content below 7% was estimated as 6 to 8 kgN/10a within the range of RVIgreen and SPAD reading of this experiment, showing much lower values than those for the maximum grain yield. The recovery of the Npi applied at PIS ranged from 53 to 83%, increasing with the increased growth amount while decreasing with the increasing Npi. The natural nitrogen supply from PIS to harvest ranged from 2.5 to 4 kg/10a, showing quadratic relationship with the shoot dry weight or shoot nitrogen content at PIS. The regression models to estimate PNup was formulated using Npi and anyone of RVIgreen, shoot dry weight, and shoot nitrogen content at PIS as predictor variables. These models showed good fitness with determination coefficients of 0.86 to 0.95 The prescription method based on the above models predicting grain yield, protein content and PNup and its constraints were discussed.

Analysis of Structural Factor and Performance of Farmhouse Rice Milling Machines (농가용 도정기의 구조요인과 도정성능의 분석)

  • Lee, Seok-Jin;Ha, Yu-Shin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.2
    • /
    • pp.91-97
    • /
    • 2014
  • In order to analyze the structural factors and milling performance of farmhouse rice milling machines in Korea, this study classified 29 models of the farmhouse rice milling machines sold in Korea into hulling and polishing devices, examined the structural features for each device, and then analyzed the performance factors based on the results. With regard to hulling devices, impeller rotational speed was investigated as a major structural factor. The hulling devices at an impeller rotational speed of 4,800 rpm were most frequently used and accounted for the largest proportion, 65.5%. At this rotational speed, the hulling rate was the highest, 99.45%, and the brown rice cracked rate was the lowest. Thus, the best impeller rotational speed for the hulling performance was analyzed as 4,800 rpm (p<0.05). With regard to polishing devices, rotor speed was investigated as a major structural factor. The polishing devices with a rotor linear velocity of 2 m/s were most commonly used and accounted for the largest proportion, 60.1%. At this linear velocity, the hulling rate was the highest with 75.07%, and the dispassion rate and broken rice rate were the lowest with 0.02 and 7.06%, respectively. Thus, the best rotor linear velocity for the polishing performance was analyzed as 2 m/s (p<0.05).

A Medium-late Maturing New Rice Cultivar with High Grain Quality, Multi-disease Resistance, Adaptability to Direct Seeding and Transplanting Cultivation, "Hopum" (벼 중만생 최고품질 복합내병성 직파 및 이앙 겸용 "호품")

  • Ko, Jong-Cheol;Kim, Bo-Kyeong;Nam, Jeong-Kwon;Baek, Man-Gee;Ha, Ki-Yong;Kim, Ki-Young;Son, Ji-Young;Lee, Jae-Kil;Choung, Jin-Il;Ko, Jae-Kwon;Shin, Mun-Sik;Kim, Young-Doo;Mo, Young-Jun;Kim, Kyeong-Hoon;Kim, Chung-Kon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.533-536
    • /
    • 2008
  • Hopum is a new japonica rice cultivar developed from the cross between Milyang165 and F1 crossing Milyang165 and Iksan438 at Department of Rice and Winter Cereal Crop, NICS, RDA, in 2006. This cultivar has a short grain shape and about 141 days growth duration from direct seeding to harvesting in the southern plain including Chungcheong province. This cultivar has short culm and spikelet number per panicle is similar to that of Nampyeongbyeo, while filled grain rate is lower than standard variety. This cultivar has medium size of brown rice and shows moderate resistance to leaf blast, to bacterial blight pathogens of $K_1$, $K_2$ and $K_3$ and stripe virus disease but susceptible to major virus diseases and insect pests. The milled kernel of Hopum is translucent with non-glutinous endosperm. Protein and amylose content of Hopum is about 6.5% and 18.7%, respectively. This cultivar has better palatability of cooked rice than Chucheongbyeo harvested in Gyeongki province. Its milling recovery (76.8%) and percentage of perfect-shaped milled rice (94.7%) were higher than Nampyeongbyeo. The milled rice yield of Hopum was 5.83 MT/ha (15% higher than Juan) under wet-direct seeding, 5.66 MT/ha (8% higher than Juan) under dry-direct seeding, and 6.00 MT/ha (8% higher than Nampyeong) under ordinary transplanting cultivation. "Hopum" would be adaptable for ordinary transplanting and direct seeding in the southern plain including Chungcheong province.