• Title/Summary/Keyword: microwave integrated circuit

Search Result 157, Processing Time 0.022 seconds

A Study on RF Characteristics of Transmission Line Employing Inverted Periodically Arrayed Capacitive Devices for Application to Highly Miniaturized Wireless Communication system on MMIC (MMIC 상에서 초소형 무선 통신 시스템에의 응용을 위한 반전된 형태의 주기적 용량성 구조를 이용한 전송선로의 RF 특성에 관한 연구)

  • Kim, Jeong-Hoon;Jang, Jang-Hyeon;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.52-57
    • /
    • 2015
  • In this paper, we studies on the RF characteristics of the transmission line employing IPACD (inverted periodically arrayed capacitive devices) on MMIC (monolithic microwave integrated circuit) for application to wireless communication system. According to measured results, the novel transmission line employing IPACD showed a wavelength much shorter than conventional transmission lines. In addition, the IPACD structure showed an effective permittivity much higher than conventional ones. We also extracted the bandwidth characteristic of the IPACD structure using equivalent circuit analysis. According to the results, the cut-off frequency of the proposed structure was 129.2 GHz.

A Ka-Band 6-W High Power MMIC Amplifier with High Linearity for VSAT Applications

  • Jeong, Jin-Cheol;Jang, Dong-Pil;Yom, In-Bok
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.546-549
    • /
    • 2013
  • A Ka-band 6-W high power microwave monolithic integrated circuit amplifier for use in a very small aperture terminal system requiring high linearity is designed and fabricated using commercial 0.15-${\mu}m$ GaAs pHEMT technology. This three-stage amplifier, with a chip size of 22.1 $mm^2$ can achieve a saturated output power of 6 W with a 21% power-added efficiency and 15-dB small signal gain over a frequency range of 28.5 GHz to 30.5 GHz. To obtain high linearity, the amplifier employs a class-A bias and demonstrates an output third-order intercept point of greater than 43.5 dBm over the above-mentioned frequency range.

A Compact C-Band 50 W AlGaN/GaN High-Power MMIC Amplifier for Radar Applications

  • Jeong, Jin-Cheol;Jang, Dong-Pil;Han, Byoung-Gon;Yom, In-Bok
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.498-501
    • /
    • 2014
  • A C-band 50 W high-power microwave monolithic integrated circuit amplifier for use in a phased-array radar system was designed and fabricated using commercial $0.25{\mu}m$ AlGaN/GaN technology. This two-stage amplifier can achieve a saturated output power of 50 W with higher than 35% power-added efficiency and 22 dB small-signal gain over a frequency range of 5.5 GHz to 6.2 GHz. With a compact $14.82mm^2$ chip area, an output power density of $3.2W/mm^2$ is demonstrated.

A Study on a Meander line employing Periodic Patterned Ground Structure on GaAs MMIC (GaAs MMIC 상에서 주기적 접지구조를 가지는 미앤더 선로에 관한 연구)

  • Jung, Bo-Ra;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.325-331
    • /
    • 2010
  • In this study, highly miniaturized short-wavelength meander line employing eriodically patterned ground structure (PPGS) was developed for application to miniaturized on-chip passive component on GaAs MMIC (monolithic microwave integrated circuit). The meander line employing PPGS showed shorter wavelength and slow-wave characteristic compared with conventional meander line. The wavelength of the meander line employing PPGS structure was 17 % of the conventional meander line on GaAs MMIC. Due to its slow-wave structure, the meander line employing PPGS exhibited large propagation constant than conventional meander line, which resulted in larger phase shift and shunt inductance value. Above results indicate that the meander line employing PPGS is a promising candidate for application to a development of miniaturized on-chip RF components as well as inductor with a high inductance value on GaAs MMIC.

A 5-20 GHz 5-Bit True Time Delay Circuit in 0.18 ㎛ CMOS Technology

  • Choi, Jae Young;Cho, Moon-Kyu;Baek, Donghyun;Kim, Jeong-Geun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.193-197
    • /
    • 2013
  • This paper presents a 5-bit true time delay circuit using a standard 0.18 ${\mu}m$ CMOS process for the broadband phased array antenna without the beam squint. The maximum time delay of ~106 ps with the delay step of ~3.3 ps is achieved at 5-20 GHz. The RMS group delay and amplitude errors are < 1 ps and <2 dB, respectively. The measured insertion loss is <27 dB and the input and output return losses are <12 dB at 5-15 GHz. The current consumption is nearly zero with 1.8 V supply. The chip size is $1.04{\times}0.85\;mm^2$ including pads.

Flexible Patch Rectennas for Wireless Actuation of Cellulose Electro-active Paper Actuator

  • Yang, Sang-Yeol;Kim, Jae-Hwan;Song, Kyo-D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.954-958
    • /
    • 2012
  • This paper reports a flexible patch rectenna for wireless actuation of cellulose electro-active paper actuator (EAPap). The patch rectenna consists of rectifying circuit layer and ground layer, which converts microwave to dc power so as to wirelessly supply the power to the actuator. Patch rectennas are designed with different slot length at the ground layer. The fabricated devices are characterized depending on different substrates and polarization angles. The EAPap integrated with the patch rectenna is actuated by the microwave power. Detailed fabrication, characterization and demonstration of the integrated rectenna-EAPap actuator are explained.

Equivalent Circuit Modeling Analysis of Square Split Ring Resonator with Defected Ground Structure (결합 접지면 구조의 사각 분리형 링 공진기의 등가 653회로 모델링 해석)

  • Mun, Seung-Min;Kim, Gir-Re;Yoon, Joong-Han;Choi, Young-Kyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.6
    • /
    • pp.653-658
    • /
    • 2015
  • In this paper, the Square Split Ring Resonator(: SRR) of Defected Ground Structure(: DGS), applicable to MMIC(: Monolithic Microwave Integrated Circuit) design, is proposed. The mathematical method to solve the equivalent parameter of the resonator from the measured results of resonator is introduced in this paper. To verify the method, SRR-DGS resonator with 2.95 GHz center frequency is fabricated, for measuring characteristics and calculating the equivalent parameter. The result from this process is compared with the data of the ADS simulation, and as a result both were identical.

AlGaN/GaN Based Ultra-wideband 15-W High-Power Amplifier with Improved Return Loss

  • Jeong, Jin-Cheol;Jang, Dong-Pil;Shin, Dong-Hwan;Yom, In-Bok;Kim, Jae-Duk;Lee, Wang-Youg;Lee, Chang-Hoon
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.972-980
    • /
    • 2016
  • An ultra-wideband microwave monolithic integrated circuit high-power amplifier with excellent input and output return losses for phased array jammer applications was designed and fabricated using commercial $0.25-{\mu}m$ AlGaN/GaN technology. To improve the wideband performance, resistive matching and a shunt feedback circuit are employed. The input and output return losses were improved through a balanced design using Lange-couplers. This three-stage amplifier can achieve an average saturated output power of 15 W, and power added efficiency of 10% to 28%, in a continuous wave operation over a frequency range of 6 GHz to 18 GHz. The input and output return losses were demonstrated to be lower than -15 dB over a wide frequency range.

High-performance filtering power divider based on air-filled substrate integrated waveguide technology

  • Ali-Reza Moznebi;Kambiz Afrooz;Mostafa Danaeian
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.338-345
    • /
    • 2023
  • A filtering power divider based on air-filled substrate-integrated waveguide (AFSIW) technology is proposed in this study. The AFSIW structure is used in the proposed filtering power divider for substantially reducing the transmission losses. This structure occupies a large area because of the use of air as a dielectric instead of typical dielectric materials. A filtering power divider provides power division and frequency selectivity simultaneously in a single device. The proposed filtering power divider comprises three AFSIW cavities. The filtering function is achieved using symmetrical inductive posts. The input and output ports of the proposed circuit are realized by directly connecting coaxial lines to the AFSIW cavities. This transition from the coaxial line to the AFSIW cavity eliminates the additional transitions, such as AFSIW-SIW and SIW-conductor-backed coplanar waveguide, applied in existing AFSIW circuits. The proposed power divider with a second-order bandpass filtering response is fabricated and measured at 5.5 GHz. The measurement results show that this circuit has a minimum insertion loss of 1 dB, 3-dB fractional bandwidth of 11.2%, and return loss exceeding 11 dB.

Ku-Band Power Amplifier MMIC Chipset with On-Chip Active Gate Bias Circuit

  • Noh, Youn-Sub;Chang, Dong-Pil;Yom, In-Bok
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.247-253
    • /
    • 2009
  • We propose a Ku-band driver and high-power amplifier monolithic microwave integrated circuits (MMICs) employing a compensating gate bias circuit using a commercial 0.5 ${\mu}m$ GaAs pHEMT technology. The integrated gate bias circuit provides compensation for the threshold voltage and temperature variations as well as independence of the supply voltage variations. A fabricated two-stage Ku-band driver amplifier MMIC exhibits a typical output power of 30.5 dBm and power-added efficiency (PAE) of 37% over a 13.5 GHz to 15.0 GHz frequency band, while a fabricated three-stage Ku-band high-power amplifier MMIC exhibits a maximum saturated output power of 39.25 dBm (8.4 W) and PAE of 22.7% at 14.5 GHz.

  • PDF