• Title/Summary/Keyword: microwave energy

Search Result 424, Processing Time 0.028 seconds

Development of a Energy-saving LED module Using K-band Microwave Motion Detecting Sensor (K대역 마이크로파 움직임 감지 센서를 이용한 에너지 절감형 LED 모듈 개발)

  • Kim, Howoon;Woo, Dong Sik
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.446-452
    • /
    • 2020
  • In this paper, we propose a energy-saving LED module using K-band microwave motion detecting sensor. To oscillate K-band microwave signal, An oscillator using a hairpin-type microstrip resonator was designed to increase stability and make fabrication easier. To radiate the microwave signal, a two-channel(TX/RX) patch antenna arrays was developed. Wilkinson power divider and ring hybrid mixer were developed and applied to obtain Doppler shift from the received signal. Shield cans were installed to protect the stability of the signals and unwanted external noise. The proposed motion detection sensor was mounted on a demonstration LED module and the energy saving performance through pre-test was verified.

The Influence of β-TCP Content on the Preparation of Biodegradable β-TCP/PLGA Composites Using Microwave Energy (마이크로파에 의한 생분해성 β-TCP/PLGA 복합체의 제조시 β-TCP 첨가량에 따른 영향)

  • Jin, Hyeong-Ho;Min, Sang-Ho;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • Biodegradable $\beta$-tricalcium phosphate ( $\beta$-TCP)/poly(lactide-co-glycolide) (PLGA) composites were synthesized by in-situ polymerization with microwave energy. The influence of the $\beta$-TCP content in $\beta$-TCP/PLGA composites on the molecular weight, crystallinity, microstructure and mechanical properties was investigated. As the molecular weight of composites decreased, the $\beta$-TCP content increased up to 10 wt.%, while the excess addition of the $\beta$-TCP content above 10 wt.% the molecular weight increased with increasing of the $\beta$-TCP content. This behavior would be due to the superheating effect or nonthermal effect induced by microwave energy. It was found that the bending strength and Young's modulus of the $\beta$-TCP/PLGA composites was proportional to the molecular weight of PLGA. The bending strength of the $\beta$-TCP/PLGA composites ranged from 18 to 38 MPa, while Young's modulus was in the range from 2 to 6 GPa.

Application of the Microwave-assisted Process to the Fast Extraction of Isoflavone from the Waste Residue of the Soybeans

  • Hua, Li;Guoqin, Hu;Dan, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2687-2690
    • /
    • 2009
  • Due to the importance of isoflavone content in soybean extracts, the microwave-assisted process (MAP) was compared to the conventional extraction methods. For comparison of the three methods, all extraction parameters (solvent, sample to solvent ratio, temperature, etc.) were kept the same; the microwave extractor was operated at 187.5 W with an emission frequency of 2450 MHz under atmospheric pressure conditions and the extractions were carried out at 75 ${^{\circ}C}$ for 3 min while the conventional reflux was at 75 ${^{\circ}C}$ for 3 h. Total yield and crude isoflavone content were determined by ultraviolet spectrophotometric and compared with the three methods. Results indicated that the MAP was comparable to the conventional method in its capability to extract target compounds without causing any degradation; in addition it dramatically reduced the extraction time from 3 h to a few minutes, suggesting that it can be an alternative technique to the time-consuming conventional reflux method.

Internal Wood Temperature Manipulation Using Quadratic Residue Diffusor Microwaves (Quadratic Residue Diffusor Microwave를 이용한 목재의 내부 온도변화에 관한 연구)

  • Kim, Ki-Ho;Kim, Kyung-Min
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In contrast to conventional microwaves, QRD (Quadratic Residue Diffusor) microwaves are a new energy-efficient technology that enhances the effect of sterilization based on changing the wavelength phase difference. Therefore, this study investigated the sterilization of wood using environmentally friendly and low energy consuming QRD microwaves. The results are as follows: for the QRD microwaves used in this study, the efficiency E = 5.75e0.32 S ($R^2$=0.908). Although the early water content was not constant, the average water content was 30.3% and after one week of natural drying, the water content was 22.6%, representing an average water content reduction of about 8%. When increasing the microwave level from 3 kW ~ 9 kW, the time taken for the temperature to increase was reduced. After the QRD microwave treatment, the wood samples showed no change in their flexural rigidity, compressive strength, or cleavage. The QRD microwave levels used in the experiments were 3, 5, 7, and 9 kW, where 9 kW was found to be the most efficient. Thus, for the purpose of eliminating nematodes and termites inside wood, a higher QRD microwave level was found to be more effective and energy efficient.

Thermal Decomposition of Arsenopyrite by Microwave Heating and the Effect of Removal Arsenic with Wet-magnetic separation (마이크로웨이브 가열에 의한 황비철석의 열분해와 습식-자력선별에 의한 비소 제거 효과)

  • On, Hyun-Sung;Kim, Hyun-Soo;Myung, Eun-Ji;Lim, Dae-Hack;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.103-112
    • /
    • 2017
  • In order to transform arsenopyrite into pyrrhotite and to decrease As content by less than 2,000 mg/kg, pulp sample and non-magnetic pulp sample were heated in a microwave oven at different heating times and were separated through wet-magnetic separation. As the microwave heating time increased, the phase of pyrrhotite was extended to become arsenopyrite entirely. The melting pores and micro-cracks occurred on the pyrrhotite due to hot spot phenomenon with microwave heating. The heated raw pulp sample (As content : 19,970.13 mg/kg) and non-magnetic pulp sample (As content : 19,970.13 mg/kg) which were heated in a microwave oven for 10 minutes were separated through wet-magnetic separation and magnetic fraction containing less than 2,000 mg/kg of As content was recovered only from the heated sample of magnetic separation. It was discovered that for the sulfide complex ore with As penalty imposed on, if microwave heating and wet-magnetic separation are effectively utilized, magnetic fraction. We expect to be able to obtain ore minerals with an arsenic content below the penalty charge.

Selective Phase Transformation of Arsenopyrite by Microwave Heating and their Enhancement Au Recovery by Thiocyanate Solution (마이크로웨이브 가열에 의한 황비철석의 선택적 상변환과 티오시안산염 용액에 의한 Au 회수율 향상)

  • Han, Oh-Hyung;Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.73-83
    • /
    • 2014
  • In order to investigate selective phase transformations and to determine the maximum Au leaching factors from microwave treated Au-bearing complex sulfides, a microscope, SEM-EDS analysis, and thiocyanate leaching tests were performed. When the Au-bearing complex sulfides were exposed to microwave heating, increasing the microwave exposure time increased temperature and decreased weight. Arsenopyrite was first selectively transformed to hematite, which formed a concentric rim structure. In this hematite, oxygen and carbon was detected and always showed high iron content and low arsenic content due to arcing and oxidation from microwave heating. The results of the leaching test using microwave treated sample showed that the maximum Au leaching parameters was reached with 0.5 g concentration thiocyanate, 2.0 M hydrochloric acid, 0.3 M copper sulfate and leaching temperature at$60^{\circ}C$. Under the maximum Au leaching conditions, 59% to 96.69% of Au was leached from the microwave treated samples, whereas only 24.53% to 92% of the Au was leached from the untreated samples.

Fabrication of Silicon Nitride Ceramics by Gel-Casting and Microwave Gas Phase Reaction Sintering(I) : Silicon Gel-Casting (Gel-Casting 및 마이크로파 기상반응소결에 의한 질화규소 세라믹 제조에 대한 연구(I) : Gel-Casting에 의한 실리콘 성형체의 제조)

  • Bai, Kang;Woo, Sang-Kuk;Han, In-Sub;Seo, Doo-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.348-353
    • /
    • 2011
  • By gel-casting, the silicon-polymer green bodies were prepared for silicon nitride ceramics, sintered by microwave gas phase reaction. Considering the viscosity and the idle time of slurries, we decided the operational conditions of related processes, and the optimum concentrations of raw materials powders, organic monomers, cross-linker, dispersant, initiator, and catalyst. So we could get the machinable green bodies, having about 50 MPa of bending strength without cracks by selecting drying conditions carefully.

3D Printed Flexible Cathode Based on Cu-EDTA that Prepared by Molecular Precursor Method and Microwave Processing for Electrochemical Machining

  • Yan, Binggong;Song, Xuan;Tian, Zhao;Huang, Xiaodi;Jiang, Kaiyong
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.180-186
    • /
    • 2020
  • In this work, a metal-ligand solution (Cu-EDTA) was prepared based on the molecular precursor method and the solution was spin-coated onto 3D printed flexible photosensitive resin sheets. After being processed by microwave, a laser with a wavelength of 355 nm was utilized to scan the spin-coated sheets and then the sheets were immersed in an electroless copper plating solution to deposit copper wires. With the help of microwave processing, the adhesion between copper wires and substrate was improved which should result from the increase of roughness, decrease of contact angle and the consistent orientation of coated film according to the results of 3D profilometer and SEM. XPS results showed that copper seeds formed after laser scanning. Using the 3D printed flexible sheets as cathode and galvanized iron as anode, electrochemical machining was conducted.

CFD Numerical Calcultion for a Cavity Matrix Combustor Applying Biogas (바이오가스 적용 캐비티 매트릭스 연소기 CFD 수치연산)

  • CHUN, YOUNG NAM;AN, JUNE
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.598-606
    • /
    • 2022
  • With the advancement of industry, the use of various sustainable energy sources and solutions to problems affecting the environment are being actively requested. From this point of view, it is intended to directly burn unused biogas to use it as energy and to solve environmental problems such as greenhouse gases. In this study, a new type of cavity matrix combustor capable of low-emission complete combustion without complex facilities such as separation or purification of biogas produced in small and medium-sized facilities was proposed, and CFD numerical calculation was performed to understand the performance characteristics of this combustor. The cavity matrix combustor consists of a burner with a rectangular porous microwave receptor at the center inside a 3D cavity that maintains a rectangular parallelepiped shape composed of a porous plate that can store heat in the combustor chamber. As a result of numerical calculation, the biogas supplied to the inlet of the combustor is converted to CO and H2, which are intermediate products, on the surface of the 3D matrix porous burner. And then the optimal combustion process was achieved through complete combustion into CO2 and H2O due to increased combustibility by receiving heat energy from the microwave heating receptor.

The Study for the Crystallization Behavior of Conventionally Heated and Microwave Heat-treated Inorganic Polymers (재래식 열과 마이크로파 에너지에 의해 열처리된 무기고분자의 결정화 거동에 관한 연구)

  • 박성수;차무경;류봉기;신학기;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.935-940
    • /
    • 1997
  • This study investigated the crystallization behavior in PbO-ZnO-B2O3-TiO2 system sealing glass, inorganic polymer heat-treated by conventional heat and microwave energy. After determining heat-treated temperature for crystallization and characteristic points by DTA analysis, samples were heat-treated in a classical electric furnace and a home-style microwave oven (LG Electronic Co., 2.45 GHz, 700 W). A microwave heat-treated sample had the growth of PbTiO3 crystal at 45$0^{\circ}C$, 2$0^{\circ}C$ lower than that of a conventionally heat-treated sample. Also, it had crystallinity about 20% higher than the conventionally heat-treated sample. At 49$0^{\circ}C$, the size of PbTiO3 crystal in the conventionally heat-treated sample was larger than that in the microwave heat-treated sample due to longer heat-treated time.

  • PDF