DOI QR코드

DOI QR Code

마이크로웨이브 가열에 의한 황비철석의 선택적 상변환과 티오시안산염 용액에 의한 Au 회수율 향상

Selective Phase Transformation of Arsenopyrite by Microwave Heating and their Enhancement Au Recovery by Thiocyanate Solution

  • 한오형 (조선대학교 에너지.자원공학과) ;
  • 김봉주 (조선대학교 에너지.자원공학과) ;
  • 조강희 (조선대학교 에너지.자원공학과) ;
  • 최낙철 (서울대학교 지역시스템공학과) ;
  • 박천영 (조선대학교 에너지.자원공학과)
  • Han, Oh-Hyung (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Kim, Bong-Ju (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Cho, Kang-Hee (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Choi, Nag-Choul (Dept. of Rural Systems Engineering/Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Park, Cheon-Young (Dept. of Energy and Resource Engineering, Chosun University)
  • 투고 : 2014.04.30
  • 심사 : 2014.06.20
  • 발행 : 2014.06.30

초록

마이크로웨이브 가열에 의하여 선택적으로 상변환을 일으키는 Au를 함유하는 황화광물을 조사하기 위하여 현미경과 SEM-EDS 분석을 수행하였으며 그리고 이에 따른 최대 Au 용출인자를 결정하기 위하여 티오시안산염 용출실험을 수행하였다. 비-가시성 Au를 함유하는 황화광물을 마이크로웨이브에 노출시킨 결과, 노출시간이 증가할수록 온도와 무게감소가 증가하였다. 이 황화광물 중 마이크로웨이브 가열에 가장 빠르게 선택적으로 상변환 된 광물은 황비철석이었다. 황비철석이 적철석으로 상변환되었으며, 상변환은 동심원적과 가장자리구조로 형성되었다. 또한 상변환 된 부분에서 O와 C가 검출되었으며, 일정하게 Fe 함량은 높게 그리고 As 함량은 낮게 나타났다. 이와 같은 결과는 마이크로웨이브 가열에 의한 arcing과 산화작용이 일어났기 때문이다. 마이크로웨이브에 35분 노출시킨 시료를 티오시안산염 용출실험에 적용하여 Au가 최대로 용출되는 조건은 0.5 g의 티오시안산나트륨 농도, 2.0 M의 염산 농도, 0.3 M의 황산구리 농도 그리고 용출온도$60^{\circ}C$에서였다. 최대 Au 용출 조건을 마이크로웨이브 처리 시료에 적용했을 때 Au 용출률이 59%에서 96.96%로 나타났지만 마이크로웨이브에 처리하지 않은 시료에서는 겨우 24.53%에서 92%로 나타났다.

In order to investigate selective phase transformations and to determine the maximum Au leaching factors from microwave treated Au-bearing complex sulfides, a microscope, SEM-EDS analysis, and thiocyanate leaching tests were performed. When the Au-bearing complex sulfides were exposed to microwave heating, increasing the microwave exposure time increased temperature and decreased weight. Arsenopyrite was first selectively transformed to hematite, which formed a concentric rim structure. In this hematite, oxygen and carbon was detected and always showed high iron content and low arsenic content due to arcing and oxidation from microwave heating. The results of the leaching test using microwave treated sample showed that the maximum Au leaching parameters was reached with 0.5 g concentration thiocyanate, 2.0 M hydrochloric acid, 0.3 M copper sulfate and leaching temperature at$60^{\circ}C$. Under the maximum Au leaching conditions, 59% to 96.69% of Au was leached from the microwave treated samples, whereas only 24.53% to 92% of the Au was leached from the untreated samples.

키워드

참고문헌

  1. Al-Harahsheh, M. and Kingman, S.W. (2004) Microwave-assisted leaching-a review. Hydrometallurgy, 73, 189-203. https://doi.org/10.1016/j.hydromet.2003.10.006
  2. Amankwah, R.K. and Pickles, C.A. (2009) Microwave roasting of a carbonaceous sulphidic gold concentrate. Minerals Engineering, 22, 1095-1101. https://doi.org/10.1016/j.mineng.2009.02.012
  3. Aylmore, M.G. (2001) Treatment of a refractory gold-copper sulfide concentrate by copper ammoniacal thiosulfate leaching. Minerals Engineering. 14, 615-637. https://doi.org/10.1016/S0892-6875(01)00057-7
  4. Balcerzak, M. (2002) Sample digestion methods for the determination of traces of precious metals by spectrometric techniques. Analytical Sciences, 18, 737-750. https://doi.org/10.2116/analsci.18.737
  5. Cadzow, M.D. and Giraudo, T.S. (2000) Macraes gold project: value creation through applied technology- pressure oxidation. New Zealand Minerals and Mining Cinference Proceeding. October, 29-31.
  6. Costa, C. (1997) Hydrometallurgy of gold: new perspectives and treatment of refractory sulfide ores. Fizykochemiczne Problemy Mineralurgii, 31, 63-72.
  7. Craig, J. R. and Vaughan, D.J. (1981) Ore microscopy and ore petrography. John Wiley and Sons, 406p.
  8. Dunn, J.G. and Chamberlain, A.C. (1997) The recovery of gold from refractory arsenopyrite concentrates by pyrolysis-oxidation. Minerals Engineering, 10, 919-928. https://doi.org/10.1016/S0892-6875(97)00074-5
  9. Filmer, A.O. (1982) The dissolution of gold from roasted pyrite concentrate. Journal of the South African Institute of Mining and metallurgy, March, 90-94.
  10. Goodall, W.R., Scales, P.J., and Butcher, A.R. (2005) The use of QEMSCAN and diagnostic leaching in the characterisation of visible gold in complex ores. Minerals Engineering, 18, 877-886. https://doi.org/10.1016/j.mineng.2005.01.018
  11. Goodall, W.R., Scales, P.J., and Ryab, C.G. (2005) Application of PIXE and diagnostic leaching in the characterisation of complex gold ores. Minerals Engineering, 18, 1010-1019. https://doi.org/10.1016/j.mineng.2005.01.011
  12. Haque, K.E. (1999) Microwave energy for mineral treatment processes-a brief review. International Journal of Mineral Processing, 57, 1-24. https://doi.org/10.1016/S0301-7516(99)00009-5
  13. Kaewkannetra, P., Garcia-Garcia, F.J. and Chin, T.Y. (2009) Bioleaching of zinc from gold ores using Acidithiobacillus ferrooxidans. Metallurgy, 16, 368-374.
  14. Kholmogorov, A.G., Kononova, O.N., Pashkov, G.L., and Kononov, Y.S. (2002) Thiocyanate solutions in gold technology. Hydrometallurgy, 64, 43-48. https://doi.org/10.1016/S0304-386X(02)00005-1
  15. Kim, B.J., Cho, K.H., Choi, N.C., and Park, C.Y. (2013) The Geochemical Interpretation of Phase Transform and Fe-leaching Efficiency for Pyrite by Microwave Energy and Ammonia Solution. Journal of the Mineralogical Society of Korea, 26, 139-150 (in Korea with English abstract). https://doi.org/10.9727/jmsk.2013.26.3.139
  16. La Brooy, S.R., Linge, H.G., and Walker, G.S. (1994) Review of gold extraction from ores. Minerals Engineering, 7, 1213-1241. https://doi.org/10.1016/0892-6875(94)90114-7
  17. Li, J., Safarzadeh, M.S., Moats, M.S., Miller, J.D., LeVier, K.M., Dietrich, M., and Wan, R.Y. (2012a) Thiocyanate hydrometallurgy for the recovery of gold part I : chemical and thermodynamic considerations. Hydrometallurgy, 113-114, 1-9. https://doi.org/10.1016/j.hydromet.2011.11.005
  18. Li, J., Safarzadeh, M.S., Moats, M.S., Miller, J.D., LeVier, K.M., Dietrich, M., and Wan, R.Y. (2012b) Thiocyanate hydrometallurgy for the recovery of gold part II : the leaching kinetics. Hydrometallurgy, 113-114, 10-18. https://doi.org/10.1016/j.hydromet.2011.11.007
  19. Maddox, L.M., Bancroft, G.M., Scaini, M.J., and Lorimer, J.W. (1998) Invisible gold: comparison of Au deposition on pyrite and arsenopyrite. American Mineralogist, 83, 1240-1245.
  20. Olubambi, P.A., Ndlovu, S., Potgieter, J.H., and Borode, J.O. (2008) Role of ore mineralogy in optimizing conditions for bioleaching low-grade complex sulphide ores. Transactions of Nonferrous Metals Society of China, 18, 1234-1246. https://doi.org/10.1016/S1003-6326(08)60210-1
  21. Pracejus, B. (2008) The ore minerals under the microscope; an optical guide. Elsevier, 875p.
  22. Rawlings, D. E. and Silver, S. (1995) Mining with microbes. Biotechnology, 13, 773-778. https://doi.org/10.1038/nbt0895-773
  23. Salsman, J.B., Williamson, R.L., Tolley, W.K., and Rice, D.A. (1996) Short-pluse microwave treatment of disseminated sulfide ores. Minerals Engineering, 9, 43-54. https://doi.org/10.1016/0892-6875(95)00130-1
  24. Stafilov, T. (2000) Determination of trace elements in minerals by electrothermal atomic absorption spectrometry. Spectrochemica Acta Part B, 55, 893-906. https://doi.org/10.1016/S0584-8547(00)00227-5
  25. Twyman, R.M. (2005) Sample dissolution for elemental analysis/Wet digestion. Analytical Chemistry, 360, 146-152.
  26. Uslue, T., Atalay, U., and Arol, A.I. (2003) Effect of microwave heating on magnetic separation of pyrite. Colloids and Surface A, 225, 161-167. https://doi.org/10.1016/S0927-7757(03)00362-5
  27. Vaughan, J.P. (2004) The process mineralogy of gold: the classification of ore types. Journal of The Minerals. Metals and Materials Society, July, 46-48.
  28. Veglio, F., Trifoni, M., Pagnanelli, F., and Toro, L. (2001) Shrinking core model with variable activation energy: a kinetic model of manganiferous ore leaching with sulphuric acid and lactose. Hydrometallurgy, 60, 167-179. https://doi.org/10.1016/S0304-386X(00)00197-3
  29. Wei, X., Viadero, Jr, R.C., and Buzby, K.M. (2005) Recovery of iron and aluminum from acid mine drainage by selective precipitation. Environmental Engineering Science, 22, 745-755. https://doi.org/10.1089/ees.2005.22.745

피인용 문헌

  1. The Effect of Microwave Heating on the Mineralogical Phase Transformation of Pyrite and Fe Leaching vol.28, pp.3, 2015, https://doi.org/10.9727/jmsk.2015.28.3.233
  2. Observability of Invisible Gold using BSE Imagery and Gold Recovery by Microwave-Nitric Acid Leaching vol.57, pp.1, 2014, https://doi.org/10.32390/ksmer.2020.57.1.001