DOI QR코드

DOI QR Code

3D Printed Flexible Cathode Based on Cu-EDTA that Prepared by Molecular Precursor Method and Microwave Processing for Electrochemical Machining

  • Yan, Binggong (Fujian Key Laboratory of Special Energy Manufacturing, Xiamen Key Laboratory of Digital Vision Measurement, Huaqiao University) ;
  • Song, Xuan (Fujian Key Laboratory of Special Energy Manufacturing, Xiamen Key Laboratory of Digital Vision Measurement, Huaqiao University) ;
  • Tian, Zhao (Fujian Key Laboratory of Special Energy Manufacturing, Xiamen Key Laboratory of Digital Vision Measurement, Huaqiao University) ;
  • Huang, Xiaodi (Fujian Key Laboratory of Special Energy Manufacturing, Xiamen Key Laboratory of Digital Vision Measurement, Huaqiao University) ;
  • Jiang, Kaiyong (Fujian Key Laboratory of Special Energy Manufacturing, Xiamen Key Laboratory of Digital Vision Measurement, Huaqiao University)
  • Received : 2019.09.16
  • Accepted : 2019.12.26
  • Published : 2020.05.31

Abstract

In this work, a metal-ligand solution (Cu-EDTA) was prepared based on the molecular precursor method and the solution was spin-coated onto 3D printed flexible photosensitive resin sheets. After being processed by microwave, a laser with a wavelength of 355 nm was utilized to scan the spin-coated sheets and then the sheets were immersed in an electroless copper plating solution to deposit copper wires. With the help of microwave processing, the adhesion between copper wires and substrate was improved which should result from the increase of roughness, decrease of contact angle and the consistent orientation of coated film according to the results of 3D profilometer and SEM. XPS results showed that copper seeds formed after laser scanning. Using the 3D printed flexible sheets as cathode and galvanized iron as anode, electrochemical machining was conducted.

Keywords

References

  1. G. A Shafeev, Quantum Electronics., 1997, 27(12), 1104-1110. https://doi.org/10.1070/QE1997v027n12ABEH001106
  2. M. Huske, J. Kickelhain, J. Muller, G. Esser, Proc. Lane., 2001, 8, 266-270.
  3. A. Fischer, D. Drummer, In 12th International Congress Molded Interconnect Devices, 2016.
  4. M. Chieh Chou, T. Hune Kao, M. Chi Huang, W. Hua Zhang, W. Li, T. Huei Lai, Advanced Material Research., 2014, 1038, 69-73. https://doi.org/10.4028/www.scientific.net/AMR.1038.69
  5. B. Yan, X. Huang, X. Song, L. Kang, Q. Le, K. Jiang, J. Electrochem. Sci. Eng., 2018, 8(4), 331-339. https://doi.org/10.5599/jese.564
  6. J. Chen, G. Lin, Y. Wang, E. Sowade, R.R. Baumann, Z. Feng, Applied Surface Science., 2017, 396, 202-207. https://doi.org/10.1016/j.apsusc.2016.09.152
  7. H. Min, B. Lee, S. Jeong, M. Lee, Optics & Laser Technology., 2017, 88, 128-133. https://doi.org/10.1016/j.optlastec.2016.09.021
  8. B. Kang, S. Han, J. Kim, S. Ko, M. Yang, J. Phys Chem C., 2011, 115(48), 23664-23670. https://doi.org/10.1021/jp205281a
  9. J. Kwon, H. Cho, H. Eom, H. Lee, Y.D. Suh, H. Moon, J. Shin, S. Hong, S.H. Ko, ACS Applied Materials & Interfaces., 2016, 8(18), 11575-11582. https://doi.org/10.1021/acsami.5b12714
  10. B. Kim, J. Park, R. Yoo, J. Park, RSC Adv., 2017, 7(83), 53025-53031. https://doi.org/10.1039/C7RA09921E
  11. S. Bai, S. Zhang, W. Zhou, D. Ma, Y. Ma, P. Joshi, A. Hu, Nano-Micro Letts., 2017, 9, 42-54. https://doi.org/10.1007/s40820-017-0139-3
  12. Y. Wang, Y. Wang, J. Chen, H. Guo, K. Liang, K. Marcus, Q. Peng, J. Zhang, Z. Feng, Electrochemical Acta., 2016, 218, 24-31. https://doi.org/10.1016/j.electacta.2016.08.143
  13. D.R. Merkel, C.M. Laursen, C.M. Yakacki, R.A. Rorrer, C.P. Frick, Surface and Coatings Technology., 2017, 331, 211-220. https://doi.org/10.1016/j.surfcoat.2017.10.008
  14. M Sato, H Nagai, Conventional and Novel Applications., 2012, 13, 103-128.
  15. H. Nagai, T. Suzuki, H. Hara, C. Mochizuki, I. Takano, T. Honda, M. Sato, Mater. Chem. Phys., 2012, 137(1), 252-257. https://doi.org/10.1016/j.matchemphys.2012.09.016
  16. L. Daniel, H. Nagai, N. Yoshida, M. Sato, Catalysts., 2013, 3(3), 625-645. https://doi.org/10.3390/catal3030625
  17. D.S. Likius, H. Nagai, S. Aoyama, C. Mochizuki, H. Hara, N. Baba, M. Sato, J. Mater. Sci., 2012, 47(8), 3890-3899. https://doi.org/10.1007/s10853-011-6245-6
  18. I. J. Shin, M. S. Park, Phys Status Solidi A., 2018, 215(1), 1700597-17000605. https://doi.org/10.1002/pssa.201700597
  19. M. Zenou, O. Ermak, A. Saar, Z. Kotler, J. Phys. D: Appl Phys., 2014, 47(2), 25501-25511. https://doi.org/10.1088/0022-3727/47/2/025501
  20. Y. Lee, J. Choi, K.J. Lee, N. E. Stott, D. Kim, Nanotechnology., 2008, 19(41), 415604-415610. https://doi.org/10.1088/0957-4484/19/41/415604
  21. A. Chen, H. Long, X. Li, Y. Li, G. Yang, P. Lu, Vacuum., 2009, 83(6), 927-930. https://doi.org/10.1016/j.vacuum.2008.10.003
  22. S. Poulston, P. M. Parlett, P. Stone, M. Bowker, Surface and Interface Analysis., 1996, 24(12), 811-820. https://doi.org/10.1002/(SICI)1096-9918(199611)24:12<811::AID-SIA191>3.0.CO;2-Z
  23. T. Abe, Y. Kashiwaba, M. Baba, J. Imai, H. Sasaki, Applied Surface Sci., 2001, 175, 549-554. https://doi.org/10.1016/S0169-4332(01)00147-7

Cited by

  1. Enhancing machining rate and geometrical accuracy in electrochemical micromachining of Co-Ni-Cr-W superalloy vol.36, pp.4, 2021, https://doi.org/10.1080/10426914.2020.1843672
  2. Influence of sputtering and electroless plating of Cr/Cu dual-layer structure on thermal conductivity of diamond/copper composites vol.115, 2021, https://doi.org/10.1016/j.diamond.2021.108296