• Title/Summary/Keyword: microstructure effect

Search Result 2,436, Processing Time 0.027 seconds

Properties of Sputter Deposited Cr Thin Film on Polymer Substrate by Glancing Angle Deposition (폴리머 기판에 스퍼터법으로 경사 증착한 Cr박막의 특성)

  • Bae, Kwang-Jin;Choi, In-Kyun;Jeong, Eun-Wook;Kim, Dong-Yong;Lee, Tae-Yong;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.54-59
    • /
    • 2015
  • Glancing angle deposition (GLAD) is a powerful technique to control the morphology and microstructure of thin film prepared by physical vapor deposition. Chromium (Cr) thin films were deposited on a polymer substrate by a sputtering technique using GLAD. The change in thickness and Vickers microhardness for the samples was observed with a change in the glancing angle. The adhesion properties of the critical load (Lc) by a scratch tester for the samples were also measured with varying the glancing angle. The critical load, thickness and Vickers microhardness for the samples decreased with an increase in the glancing angle. However, the thickness of the Cr thin film prepared at a $90^{\circ}$ glancing angle showed a relatively large value of 50 % compared to that of the sample prepared at $0^{\circ}$. The results of X-ray diffraction and scanning electron microscopy demonstrated that the effect of GLAD on the microstructure of samples prepared by sputter technique was not as remarkable as the samples prepared by evaporation technique. The relatively small change in thickness and microstructure of the Cr thin film is due to the superior step-coverage properties of the sputter technique.

Microstructure of Non-Sintered Inorganic Binder using Phosphogypsum and Waste Lime as Activator

  • Kim, Ji-Hoon;An, Yang-Jin;Mun, Kyung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.305-312
    • /
    • 2018
  • This study is about the development of a non-sintered binder (NSB) which does not require a sintering process by using the industrial by-products Phosphogypsum (PG), Waste Lime (WL) and Granulated Blast Furnace Slag (GBFS). In this report, through SEM analysis of the NSB paste hardening body, micropore analysis of paste using the mercury press-in method and microstructure observation were executed to consider the influence of the formation of the pore structure and the distribution of pore volume on strength, and the following conclusions were reached. 1) Pore structure of NSB paste of early age is influenced by hydrate generation amount by GBFS and activator. 2) Through observing the internal microstructure of NSB binder paste, it was found that the strength expression at early age due to hydration reaction was achieved with a large amount of ettringite serving as the frame with C-S-H gel generated at the same time. It was confirmed that C-S-H gel wrapped around ettringite, and as time passed, the amount generated continually increased, and C-S-H gel tightly filled the pores of hardened paste, forming a dense network-type web structure. 3) For NSB-type cement, the degree of formation of gel pores below $10{\mu}m$ had a greater influence on strength improvement than simple pore reduction by charging capillary pores, and the pore size that had the greatest effect on strength was micropores with diameter below $10{\mu}m$.

Fabrication and Characterization of 7.5 wt% Y2O3-ZrO2 Thermal Barrier Coatings Deposited by Suspension Plasma Spray (서스펜션 플라즈마 용사법을 이용한 7.5 wt% Y2O3-ZrO2 열차폐코팅 제조 및 평가)

  • Lee, Won-Jun;Oh, Yoon-Suk;Lee, Sung-Min;Kim, Hyung-Tae;Lim, Dae-Soon;Kim, Seongwon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.598-604
    • /
    • 2014
  • Considerable research efforts have been explored attempting to enhance the thermal durability of thermal barrier coatings (TBCs) at the high operating temperatures of gas turbines. In this study, the suspension plasma spray (SPS) process was applied to produce TBCs with a segmented structure by using an yttria-stabilized zirconia (YSZ) suspension. Four different experiment sets were carried out by controlling the ratio between surface roughness of the bond coat and feed stock size ($R_a/D_{50}$) in order to examine the effect of $R_a/D_{50}$ ratio on the microstructure of SPS-prepared coatings. When the $R_a/D_{50}$ had a high value of 11.8, a deposited thick coating turned out to have a cone-type columnar microstructure. In contrast, at the low $R_a/D_{50}$ values of 2.9 and 0.18, a deposited thick coating appeared to have a dense, vertically-cracked microstructure. However, with the very low $R_a/D_{50}$ value of 0.05 the coating was delaminated.

Microstructure Evolution of Ti-6Al-4Fe-0.25Si through Aging Heat Treatment (시효처리에 따른 Ti-6Al-4Fe-0.25Si 합금의 미세조직 변화)

  • Song, Yong Hwan;Kang, Joo-Hee;Park, Chan Hee;Kim, Seong-Woong;Hyun, Yong-Taek;Kang, Nam Hyun;Yeom, Jong-Taek
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.477-485
    • /
    • 2012
  • The effect of aging heat treatment on microstructure evolution of the Ti-6Al-4Fe-0.25Si alloy with an initial microstructure of an elongated alpha was investigated. Aging treatments of the samples were carried out at $550^{\circ}C$ for up to 100 hours. The microstructure of the 5 hours heat-treated sample consisted of alpha grains, beta matrix and some TiFe intermetallic compounds that were precipitated from the beta matrix. Increasing the aging time to 10 hours, most of the beta matrix was decomposed to very fine alpha grains (${\sim}0.5{\mu}m$) and TiFe, and thus the volume fraction of the beta matrix was significantly decreased. EBSD analysis revealed that newly formed tertiary-alpha-grains in the vicinity of TiFe had high angle boundaries with respect to the primary and secondary alpha grains. As a result of these phase transformations during aging, the fraction of the alpha/alpha grain boundary was increased while that of the alpha/beta phase boundary was decreased.

Influences of heating processes on properties and microstructure of porous CeO2 beads as a surrogate for nuclear fuels fabricated by a microfluidic sol-gel process

  • Song, Tong;Guo, Lin;Chen, Ming;Chang, Zhen-Qi
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.257-262
    • /
    • 2019
  • The control of microstructure is critical for the porous fuel particles used for infiltrating actinide nuclides. This study concerns the effect of heating processes on properties and microstructure of the fuel particles. The uniform gel precursor beads were synthesized by a microfluidic sol-gel process and then the porous $CeO_2$ microspheres, as a surrogate for the ceramic nuclear fuel particles, were obtained by heating treatment of the gel precursors. The fabricated $CeO_2$ microspheres have a narrow size distribution and good sphericity due to the feature of microfluidics. The effects of heating processes parameters, such as heating mode and peak temperatures on the properties of microspheres were studied in detail. An optimized heating mode and the peak temperature of $650^{\circ}C$ were selected to produce porous $CeO_2$ microspheres. The optimized heating mode can avoid the appearance of broken or crack microspheres in the heating process, and as-prepared porous microspheres were of suitable pore size distribution and pore volume for loading minor actinide (MA) solution by an infiltration method that is used for fabrication of MA-bearing nuclear fuel beads. After the infiltration process, $1000^{\circ}C$ was selected as the final temperature to improve the compressive strength of microspheres.

Effect of T6 and T73 Heat Treatments on Microstructure, Mechanical Responses and High Cycle Fatigue Properties of AA7075 Alloy Modified with Mg and Al2Ca ((Mg + Al2Ca)로 개량된 AA7075 합금의 미세조직, 기계적 특성, 그리고 고주기 피로 특성에 미치는 T6 및 T73 열처리의 효과)

  • Hwang, Y.J.;Kim, G.Y.;Kim, K.S.;Kim, Shae K.;Yoon, Y.O.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.5-15
    • /
    • 2021
  • The effects of heat treatments (T6 and T73) on the microstructure, mechanical properties, and high cycle fatigue behavior of modified AA7075 alloys were investigated. A modified 7075 alloy was manufactured using modified-Mg (Mg-Al2Ca) instead of the conventional element Mg. Based on the microstructure, the average grain size was 4.5 ㎛ (T6) and 5.2 ㎛ (T73). Regardless of heat treatment, the modified AA7075 alloys consisted of Al matrix containing homogeneously distributed Al2CuMg and MgZn2 phases with reduced Fe-intermetallic compound. Room temperature tensile tests showed that the properties of modified 7075-T6 (Y.S.: 622MPa, T.S: 675MPa, elongation: 15.4%) were superior to those of T73 alloy (Y.S.: 492MPa, T.S: 548MPa, elongation: 12.8%). Experimental data show that the fatigue life of T6 was 400 MPa, about 64% of its yield strength. However, the fatigue life of T73 alloy was 330 MPa and 67%. Irrespective of the stress level, all crack initiation points were located on the specimen surface, and no inclusions acting as stress concentrators were seen. Superior mechanical properties and high cycle fatigue behavior of modified AA7075-T6 alloy are attributed to the fine grains and homogeneous distribution of small second phases such as MgZn2 and Al2CuMg, in addition to reduced Fe-intermetallic compounds.

Experimental study of welding effect on grade S690Q high strength steel butt joint

  • Chen, Cheng;Chiew, Sing Ping;Zhao, Mingshan;Lee, Chi King;Fung, Tat Ching
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.401-417
    • /
    • 2021
  • This study experimentally reveals the influence of welding on grade S690Q high strength steel (HSS) butt joints from both micro and macro levels. Total eight butt joints, taking plate thickness and welding heat input as principal factors, were welded by shielded metal arc welding. In micro level, the microstructure transformations of the coarse grain heat affected zone (CGHAZ), the fine grain heat affected zone (FGHAZ) and the tempering zone occurred during welding were observed under light optical microscopy, and the corresponding mechanical performance of those areas were explored by micro-hardness tests. In macro level, standard tensile tests were conducted to investigate the impacts of welding on tensile behaviour of S690Q HSS butt joints. The test results showed that the main microstructure of S690Q HSS before welding was tempered martensite. After welding, the original microstructure was transformed to granular bainite in the CGHAZ, and to ferrite and cementite in the FGHAZ. For the tempering zone, some temper martensite decomposed to ferrite. The performed micro-hardness tests revealed that an obvious "soft layer" occurred in HAZ, and the HAZ size increased as the heat input increased. However, under the same level of heat input, the HAZ size decreased as the plate thickness increased. Subsequent coupon tensile tests found that all joints eventually failed within the HAZ with reduced tensile strength when compared with the base material. Similar to the size of the HAZ, the reduction of tensile strength increased as the welding heat input increased but decreased as the thickness of the plate increased.

A Study on Powder Size Dependence of Additive Manufactured AlCrFeNi HEA on Its Microstructure and Mechanical Properties (3D 프린팅으로 제작된 AlCrFeNi 고엔트로피 합금의 분말 입도에 따른 특성 분석)

  • Choi, Jong Woo;Park, Hae Jin;Kang, Gyeol Chan;Jung, Min Seob;Oh, Ki Tae;Hong, Sung Hwan;Kim, Hyun Gil;Kim, Ki Buem
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.22-27
    • /
    • 2022
  • Conventionally, metal materials are produced by subtractive manufacturing followed by melting. However, there has been an increasing interest in additive manufacturing, especially metal 3D printing technology, which is relatively inexpensive because of the absence of complicated processing steps. In this study, we focus on the effect of varying powder size on the synthesis quality, and suggest optimum process conditions for the preparation of AlCrFeNi high-entropy alloy powder. The SEM image of the as-fabricated specimens show countless, fine, as-synthesized powders. Furthermore, we have examined the phase and microstructure before and after 3D printing, and found that there are no noticeable changes in the phase or microstructure. However, it was determined that the larger the powder size, the better the Vickers hardness of the material. This study sheds light on the optimization of process conditions in the metal 3D printing field.

Effect of Novel High-Intensity Ultrasound Technique on Physio-Chemical, Sensory Attributes, and Microstructure of Bovine Semitendinosus Muscle

  • Eun Yeong Lee;Dhanushka Rathnayake;Yu Min Son;Allah Bakhsh;Young Hwa Hwang;Jeong Keun Seo;Chul Beom Kim;Seon Tea Joo
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.85-100
    • /
    • 2023
  • The present study aimed to evaluate the effects of high-intensity ultrasound (HIU) application on meat quality traits, sensory parameters, and the microstructure of semitendinosus muscle from Hanwoo cattle. The samples were treated in an ultrasonic bath (35 kHz) at an intensity of 800 W/cm2 for 60 min, followed by aging at 1℃ for 0, 3, and 7 days. The application of ultrasound resulted in lower Warner-Bratzler shear force and higher myofibrillar fragmentation index values during the storage period. HIU also enhanced the tenderness, flavor, umami, and overall acceptability of cooked beef muscle. However, the electronic tongue evaluation results showed higher umami values in the control treatment on the seventh day of storage. The microstructure of sonicated meat showed disorganized myofibrillar architecture and swelling in the A-band region of sarcomeres during the storage period, which led to greater meat tenderness. The heatmap illustrated the high abundance of α-linolenic acid (C20:5n3) and eicosapentaenoic acid (C18:3n3) in sonicated meat samples on the third day of the storage. These results showed that HIU is a potential method for tenderizing and improving the sensory attributes of beef without compromising other quality aspects.

Changes in Microstructure and Mechanical Properties due to Heat Treatment of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca Alloy Sheet Manufactured via Normal Casting and Twin Roll Casting Process (일반주조 및 쌍롤주조 공정으로 제조된 Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca 합금 판재의 열처리에 따른 미세조직 및 기계적 특성 변화)

  • Dong Hwan Eom;No Jin Park
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.359-366
    • /
    • 2023
  • Changes in microstructure and mechanical properties of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca (AZMX1100) alloy sheet manufactured by normal casting and twin roll casting process, were studied according to process and heat treatment. Non-uniform microstructure was observed in the initial sheet produced through both processes, and in particular, tilted dendrites and shifted central segregation were observed in the twin roll casting sheet. It was homogenized through hot rolling and heat treatment, and heat treated at 350℃ and 400℃ to compare the effect of heat treatment temperature. Both sheets were homogenized by the hot rolling process, and the grain size increased as the heat treatment temperature and time increased. It was confirmed that the grain size, deviation, and distribution of the second phase were finer and more homogenized in the TRC sheet. Accordingly, mechanical properties such as hardness, formability, and tensile strength also showed better values. However, unlike other previously reported AZMX alloy systems, it showed low formability (Erichsen value), which was judged by the influence of Al2Ca present in the microstructure.