DOI QR코드

DOI QR Code

Microstructure Evolution of Ti-6Al-4Fe-0.25Si through Aging Heat Treatment

시효처리에 따른 Ti-6Al-4Fe-0.25Si 합금의 미세조직 변화

  • Song, Yong Hwan (Department of Material Science and Engineering, Pusan National University) ;
  • Kang, Joo-Hee (Titanium Department, Korea Institute of Materials Science) ;
  • Park, Chan Hee (Titanium Department, Korea Institute of Materials Science) ;
  • Kim, Seong-Woong (Titanium Department, Korea Institute of Materials Science) ;
  • Hyun, Yong-Taek (Titanium Department, Korea Institute of Materials Science) ;
  • Kang, Nam Hyun (Department of Material Science and Engineering, Pusan National University) ;
  • Yeom, Jong-Taek (Titanium Department, Korea Institute of Materials Science)
  • 송용환 (부산대학교 재료공학부) ;
  • 강주희 (재료연구소 타이타늄 연구실) ;
  • 박찬희 (재료연구소 타이타늄 연구실) ;
  • 김성웅 (재료연구소 타이타늄 연구실) ;
  • 현용택 (재료연구소 타이타늄 연구실) ;
  • 강남현 (부산대학교 재료공학부) ;
  • 염종택 (재료연구소 타이타늄 연구실)
  • Received : 2012.03.30
  • Published : 2012.07.25

Abstract

The effect of aging heat treatment on microstructure evolution of the Ti-6Al-4Fe-0.25Si alloy with an initial microstructure of an elongated alpha was investigated. Aging treatments of the samples were carried out at $550^{\circ}C$ for up to 100 hours. The microstructure of the 5 hours heat-treated sample consisted of alpha grains, beta matrix and some TiFe intermetallic compounds that were precipitated from the beta matrix. Increasing the aging time to 10 hours, most of the beta matrix was decomposed to very fine alpha grains (${\sim}0.5{\mu}m$) and TiFe, and thus the volume fraction of the beta matrix was significantly decreased. EBSD analysis revealed that newly formed tertiary-alpha-grains in the vicinity of TiFe had high angle boundaries with respect to the primary and secondary alpha grains. As a result of these phase transformations during aging, the fraction of the alpha/alpha grain boundary was increased while that of the alpha/beta phase boundary was decreased.

Keywords

Acknowledgement

Supported by : 재료연구소

References

  1. P. C. Turner and J. S. Hansen, "An Assessment of Existing Titanium Technologies", Albany Research Center, U.S. Department of Energy, Oregon (1999).
  2. J. D. K. Rivard, C. A. Blue, D. C. Harper, J. O. Kiggans, P. A. Menchhofer, J. R. Mayotte, L. Jacobsen, and D. Kogut, JOM 57, 58 (2005).
  3. J. K. Hong, C. H. Lee, J. H. Kim, J. T. Yeom, and N. K. Park, Surf. Rev. Lett. 17, 1 (2010). https://doi.org/10.1142/S0218625X10013540
  4. F. H. Froes, S. J. Mashl, V. S. Moxson, J. C. Hebeisen, and V. A. Duz, JOM 56, 46 (2004).
  5. Z. Chen, D. J. Fray, and T. W. Farthing, Nature 407, 361 (2000). https://doi.org/10.1038/35030069
  6. C. Ouchi, K. Minakawa, K. Takahashi, A. Ogawa, and M. Ishikawa, NKK Tech. Rev. 65, 61 (1992).
  7. P. G. Allen, P. J. Bania, A. J. Hutt, and Y. Combress, Titanium '95 Science and Technology 1680 (1995).
  8. P. J. Bania, A. J. Hutt, R. E. Adams, and W. M. Parris, Titanium '92 Science and Technology 2787 (1993).
  9. R. Boyer, G. Welsch, and E. W. Collins, Materials Properties Handbook, Titanium Alloys, ASM (1996).
  10. H. Fujii, S. Soeda, M. Hanaki, and H. Okano, Titanium '95 Science and Technology 2309 (1996).
  11. B. H. Choe, J. W. Kim, H. W. Jeong, Y. T. Hyun, S. E. Kim, and Y. T. Lee, J. Kor. Inst. Met. & Mater. 42, 1 (2004).
  12. C. H. Park, B. Lee, S. L. Semiatin, and C. S. Lee, Mater. Sci. Eng. A 527, 5203 (2010). https://doi.org/10.1016/j.msea.2010.04.082
  13. H. W. Jeong, S. E. Kim, Y. T. Hyun and Y. T. Lee, J. Kor. Inst. Met. & Mater. 39, 34 (2001).
  14. P. Zeitz, J. E. Wittig, and G. Frommeyer, Scr. Metall. 20, 757 (1986). https://doi.org/10.1016/0036-9748(86)90506-5
  15. J. H. Kang and S. H. Kim, Korean J. Met. Mater. 48, 730 (2010).
  16. EDAX-TSL, OIM Analysis 6.0 manual (2010).
  17. S. Suzuki, EBSD textbook: OIM analyis (B2.02), TSL solutions, Tokyo (2007).
  18. R. Petrov, L. Kestens, A. Wasilkowska, and Y. Houbaert, Mater. Sci. Eng. A 447, 285 (2007). https://doi.org/10.1016/j.msea.2006.10.023
  19. S. H. Kim, J. H. Kang, and S. Z. Han, Korean J. Met. Mater. 48, 847 (2010).
  20. J. H. Kim, S. L. Semiatin, and C. S. Lee, Mater. Sci. Eng. A 394, 366 (2005). https://doi.org/10.1016/j.msea.2004.11.061
  21. J. S. Kim, J. H. Kim, Y. T. Lee, C. G. Park, and C. S. Lee, Mater. Sci. Eng. A 263, 272 (1999). https://doi.org/10.1016/S0921-5093(98)01157-5