• Title/Summary/Keyword: microstructure effect

Search Result 2,436, Processing Time 0.025 seconds

Optical properties of vanadium dioxide thin films on c-Al2O3 (001) substrates by in-situ RF magnetron sputtering

  • Han, Seung Ho;Kang, So Hee;Kim, Hyeongkeun;Yoon, Dae Ho;Yang, Woo Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.224-229
    • /
    • 2013
  • Vanadium oxide thin films were deposited on $c-Al_2O_3$ (001) substrate by in-situ RF magnetron sputtering. Oxygen partial pressure was adjusted to prepare thermochromic $VO_2$ phase. X-ray diffraction patterns and scanning electron microscopy convincingly showed that plate-like $V_2O_5$ grains were changed into round-shape $VO_2$ grains as oxygen partial pressure decreased. After the optimized deposition conditions were fixed, the effect of substrate temperature and orientation on the optical properties of $VO_2$ thin films was analyzed.

A Study on the Mechanical Properties and Fatigue Limit of the Austenitizing Treatment Conditions in Austempered Ductile Iron (오스템퍼링처리한 구상흑연주철의 오스테나이트화 조건에 따른 기계적 성질 및 피로한도에 관한 연구)

  • Kim, Min-Gun;Lim, Bok-Kyu
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.3-8
    • /
    • 2004
  • This study was performed to investigate the effect of two step austenitized treatment on the mechanical properties and fracture characteristic of the ductile cast iron and austempered ductile cast iron(ADI). The obtained results of this study were as follows. The matrix structures of specimens were changed differently by austenitizing heat treatment. Microstructure of austempered ductile cast iron obtained by two step austenitized treatment was bainitic ferrite and retained austenite. With two step austenitized treatment, vield strength, tensile strength and hardness decreased, while the elongation increased.

  • PDF

Effect of Localized Recrystallization Distribution on Edgebond and Underfilm Applied Wafer-level Chip-scale Package Thermal Cycling Performance

  • Lee, Tae-Kyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • The correlation between crack propagation and localized recrystallization are compared in a series of cross section analyses on thermal cycled edgebond and underfilm material applied wafer level chip scale package (WLCSP) components with a baseline of no-material applied WLCSP components. The results show that the crack propagation distribution and recrystallization region correlation can explain potential degradation mechanisms and support the damage accumulation history in a more efficient way. Edgebond material applied components show a shift of damage accumulation to a more localized region, thus potentially accelerated the degradation during thermal cycling. Underfilm material applied components triggered more solder joints for a more wider distribution of damage accumulation resulting in a slightly improved thermal cycling performance compared to no-material applied components. Using an analysis on localized distribution of recrystallized areas inside the solder joint showed potential value as a new analytical approach.

Flow Softening Behavior during the High Temperature Deformation of AZ31 Mg alloy (AZ31 Mg 합금의 고온 변형 시의 동적 연화 현상)

  • Lee, Byoung-Ho;Reddy, N.S.;Yeom, Jong-Teak;Lee, Chong-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.70-73
    • /
    • 2006
  • In the present study, the flow-softening behavior occurring during high temperature deformation of AZ31 Mg alloy was investigated. Flow softening of AZ31 Mg alloy was attributed to (1) thermal softening by deformation heating and (2) microstructural softening by dynamic recrystallization. Artificial neural networks method was used to derive the accurate amounts of thermal softening by deformation heating. A series of mechanical tests (High temperature compression and load relaxation tests) was conducted at various temperatures ($250^{\circ}C{\sim}500^{\circ}C$) and strain rates ($10^{-4}/s{\sim}100/s$) to formulate the recrystallization kinetics and grain size relation. The effect of DRX kinetics on microstructure evolution (fraction of recrystallization) was evaluated by the unified SRX/DRX (static recrystallization/dynamic recrystallization) approaches

  • PDF

Nanocrystallization of Metallic Powders during High Pressure Torsion Processing (금속분말의 고압비틀림 성형시 나노결정화)

  • Yoon, Seung-Chae;Kwak, Eun-Jeong;Kim, Taek-Soo;Hong, Sun-Ig;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.360-363
    • /
    • 2007
  • Microstructure and microhardness of metallic powders of pure copper were studied after high pressure torsion(HPT) processing with 10 turns of die rotation and high pressure of 6 GPa. The grain size of copper decreases drastically after HPT and reaches nanometer size ranges. During HPT, the hardness of consolidates of copper powders increases with increasing the temperature of HPT processing. Examinations of the fracture surfaces indicated evidence of ductile fracture. The results proved that HPT of copper powders has a beneficial effect for homogeneous deformation with reducing grain size.

The Effect of Initial Partial Pressure of Nitrogen on the Manufacturing of Reaction-Bonded Silicon Nitride (반응결합 질화규소의 제조의 있어서 초기 질소분압의 영향)

  • 이근예;이준근;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.1
    • /
    • pp.51-59
    • /
    • 1984
  • In this paper mechanical properties of reaction-bonded silicon nitride are studied with the variation of initial nitrogen partial pressure. At 1, 25$0^{\circ}C$ the amount of nitridation and the nucleation of nitride increase linearly with the nitrogen partial pressure increase. After the nitridation is completed the density of nitride and modulus of rupture at room temperature are increased with the amount of nitridation. When the partial pressure of nitrogen is 0.5 atm the specimen show the optimum properties that is the highest density of nitride and modulus of rupture. Also the microstructure of $\alpha$-matte is deveoped very well at that pressure of nitrogen which contributes to the strength development of specimen. It is shown that with proper control of initial partial pressure of nitrogen high strength silicon nitride body can be manufactured for dynamic applications.

  • PDF

Effects of Post-Annealing on Crystallization and Electrical Behaviors of ITO Thin Films Sputtered on PES Substrates (PES 필름상에 스퍼터링한 ITO 박막의 열처리에 따른 결정화 거동 및 전기적 특성 변화)

  • So, Byung-Soo;Kim, Young-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.185-192
    • /
    • 2006
  • The effects of annealing on structural and electrical properties of ITO/PES (Indium Tin Oxide/Polyethersulfone) films was investigated. Amorphous ITO thin films were grown on plastic substrates, PES using low temperature DC magnetron sputtering. Various post annealing techniques were attempted to research variations of microstructure and electrical properties: i) conventional thermal annealing, ii) excimer laser annealing, iii) UV irradiation. The electrical properties were obtained using Hall effect measurements and DC 4-point resistance measurement. The microstructural features were characterized by FESEM, XRD, Raman spectroscopy in terms of morphology and crystallinity. Optimized UV treatment exhibits the enhanced conductivity and crystallinity, compared to those of conventional thermal annealing.

Texture Development in Liquid-Phase-Sintered β -SiC by Seeding with β -SiC Whiskers

  • Kim, Won-Joong;Roh, Myong-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.152-155
    • /
    • 2006
  • Silicon carbide ceramics seeded with 10-30 wt% SiC whiskers are fabricated by hot pressing and annealing. A quantitative texture analysis including calculation of the Orientation Distribution Function (ODF) is used for obtaining the degrees of preferred orientation of the fabricated samples. The microstructure and crystallographic texture are discussed with respect to the effect of ${\beta}-SiC$ whisker seeds on the resulting fracture toughness values. The SEM microstructures and the texture data reveal a correlation between texture and fracture toughness anisotropy.

Preparation of Zirconia-Coated NiO Powder and its Microstructure ($ZrO_2$를 피복한 NiO 분말의 제조 및 미세구조)

  • 문지웅;이홍림;김구대;김재동;이동아;이해원
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.7
    • /
    • pp.653-658
    • /
    • 1998
  • Zirconia coated NiO powders were prepared by the thermal hydrolysis of $Zro(NO_3)_2$.$6H_2O$ in a mixed solvent of alcohol and water. Amorphous zirconium hydroxide was uniformly coated on the surface of NiO powder with the thickness of 20nm. The $ZrO_2$ coating layer was crystallized to tetragonal $ZrO_2$ with the size of 40-60nm at $900^{\circ}C$. The coated NiO powder containing 15 vol% $ZrO_2$ was found to have a similar isoelectric point to that of the $ZrO_2$ The grain growth inhibition effect of the coated powders was superior to the mechanically mixed powders.

  • PDF

Thermal Emissivity of a Nuclear Graphite as a Function of Its Oxidation Degree (2) - Effect of Surface Structural Changes -

  • Seo, Seung-Kuk;Roh, Jae-Seung;Kim, Eung-Seon;Chi, Se-Hwan;Kim, Suk-Hwan;Lee, Sang-Woo
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.300-304
    • /
    • 2009
  • Thermal emissivity of nuclear graphite was measured with its oxidation degree. Commercial nuclear graphites (IG-110, PECA, IG-430, and NBG-18) have been used as samples. Concave on graphites surface increased as its oxidation degree increased, and R value (Id/Ig) of the graphites decreased as the oxidation degree increased. The thermal emissivity increased depending on the decrease of the R (Id/Ig) value through Raman spectroscopy analysis. It was determined that the thermal emissivity was influenced by the crystallinity of the nuclear graphite.