• Title/Summary/Keyword: microstructure effect

Search Result 2,436, Processing Time 0.031 seconds

DETECTION OF ODSCC IN SG TUBES DEPENDING ON THE SIZE OF THE CRACK AND ON THE PRESENCE OF SLUDGE DEPOSITS

  • Chung, Hansub;Kim, Hong-Deok;Kang, Yong-Seok;Lee, Jae-Gon;Nam, Minwoo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.869-874
    • /
    • 2014
  • It was discovered in a Korean PWR that an extensive number of very short and shallow cracks in the SG tubes were undetectable by eddy current in-service-inspection because of the masking effect of sludge deposits. Axial stress corrosion cracks at the outside diameter of the steam generator tubes near the line contacts with the tube support plates are the major concern among the six identical Korean nuclear power plants having CE-type steam generators with Alloy 600 high temperature mill annealed tubes, HU3&4 and HB3~6. The tubes in HB3&4 have a less susceptible microstructure so that the onset of ODSCC was substantially delayed compared to HU3&4 whose tubes are most susceptible to ODSCC among the six units. The numbers of cracks detected by the eddy current inspection jumped drastically after the steam generators of HB4 were chemically cleaned. The purpose of the chemical cleaning was to mitigate stress corrosion cracking by removing the heavy sludge deposit, since a corrosive environment is formed in the occluded region under the sludge deposit. SGCC also enhances the detection capability of the eddy current inspection at the same time. Measurement of the size of each crack using the motorized rotating pancake coil probe indicated that the cracks in HB4 were shorter and substantially shallower than the cracks in HU3&4. It is believed that the cracks were shorter and shallower because the microstructure of the tubes in HB4 is less susceptible to ODSCC. It was readily understood from the size distribution of the cracks and the quantitative information available on the probability of detection that most cracks in HB4 had been undetected until the steam generators were chemically cleaned.

Microstructure and Surface Hardening of Pressure-assisted Sintered FeAl-base Intermetallic Compound by Plasma Nitriding (가압소결에 의해 제조된 FeAl계 금속간 화합물의 플라즈마 질화에 의한 미세조직 및 표면경화)

  • Park, Ji-Hwan;Park, Yun-U
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1102-1107
    • /
    • 1999
  • FeAl matrix composite was fabricated successfully by hot-pressing. The mechanical properties of FeAl alloys have been widely studies, but their behaviors of surface hardening effect by plasma nitriding has not yet been studied. This study was to analysis the relationship between microstructure of the sintered composite by hot-pressing and surface hardening at plasma nitriding treatment. Surface hardening of FeAl base alloys was improved by plasma nitriding with increasing plasma treatment time. Excellent surface hardness in the FeAl alloys could be obtained by plasma nitriding($\textrm{H}_{\textrm{v}}$ 100gf, diffusion layer: 1100~1450kg/$\textrm{mm}^2$, matrix : 330~360kg/$\textrm{mm}^2$). Diffusion layer size increased with increasing plasma nitriding times and decreased with increasing Sic, content.

  • PDF

A Study of Strength, Fracture Toughness and Superconducting Properties of YBCO-Ag Composite Superconductors (YBCO-Ag 복합초전도체의 강도, 파괴인성 및 초전도성질에 관한 연구)

  • Joo, Jin-Ho;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.394-398
    • /
    • 1998
  • We have studied the effect of Ag additions on the microstructure and the related mechanical and supercon¬ducting properties of $ YBa_{2}$$Cu_{3}$$O_{7-\delta}$ (YBCO) superconductors. A 5-15 vol.% of Ag was added to YBCO in the forms of Ag and $AgNO_{3}$, powder and the resultant microstructural evolution was evaluated. It was observed that the strength and fracture toughness of YBCO increased with increasing Ag content. These improvements in strength and fracture toughness are believed to be due to the strengthening mechanisms caused by the presence of Ag. In addition, YBCO-Ag composite superconductors showed higher values of strength and fracture toughness when Ag was added in the form of AgNO, than those of which was added Ag. The higher mechanical properties of YBCO- Ag resulting from $AgNO_{3}$, addition are probably due to the microstructure of more finely and uniformly distributed Ag particles. The addition of Ag also showed slightly improved critical current density of YBCO superconductors.

  • PDF

Evaluation and Comparison of Weldabilities with Various Welding Processes on TMCP Steels (TMCP강의 용접 공정별 입열량에 따른 용접부 물성 평가 및 비교)

  • Choi, Chul Young;Ji, Chang Wook;Kim, Hyoung Chan;Nam, Dae-Geun;Kim, Joungdon;Kim, Soon Kook;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.6-14
    • /
    • 2014
  • This paper has an aim to evaluate microstructure and fracture toughness of TMCP steel weldment applied for off-shore wind tower with the focus on the effect of heat input on the weldment with various welding processes; FCAW(13kJ/cm and 30kJ/cm), SAW(62kJ/cm), and EGW(177kJ/cm). Based on experimental results developed from this study, it was found that the impact toughness of top side for TMCP steel weldments with heat input up to 62 kJ/cm satisfied the required minimum value except the EGW(177kJ/cm). The heat input and microstructure are the main factors of impact toughness. The heat input of 13kJ/cm on back side with low heat input increased the amount of grain boundary ferrite which has low impact toughness, and heat input of 177kJ/cm on top side is significant enough to produce the austenite grain growth. The compositions and sizes of inclusions which are the dominant factors for the formation of acicular ferrite were analyzed by OM and EDS. As the heat input increased, the inclusions also grew and a nucleation site decreased. The size of nonmetallic inclusions and the crack width was nearly similar, therefore the inclusions were related with the crack propagation.

The Bonding Strength Characteristic of the Filler Metal Powder on the TLP Bonded Region of Superalloy GTD-111DS (일방향 초내열합금 GTD-111DS에서 삽입금속 분말에 따른 천이액상확산접합부의 접합강도 특성)

  • Oh, In-Seok;Kim, Gil-Moo;Moon, Byeong-Shik
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.45-50
    • /
    • 2007
  • The Ni-base superalloy GTD111 DS is used in the first stage blade of high power land-based gas turbines. Advanced repair technologies of the blade have been introduced to the gas turbine industry over recent years. The effect of the filler metal powder on Transient Liquid Phase bonding phenomenon and tensile mechanical properties was investigated on the GTD111 DS superalloy. At the filler metal powder N series, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid filler metal powder was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solids in the bonded interlayer grew from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The bond strength of N series filler metal powder was over 1000 MPa. and ${\gamma}'$ phase size of N series TLP bonded region was similar with base metal by influence of Ti, Al elements. At the insert metal powder M series, the Si element fluidity of the filler metal was good but microstructure irregularity on bonded region because of excessive Si element. Nuclear of solids formed not only from the base metal near the bonded interlayer but also from the remained filler metal powder in the bonded interlayer. When the isothermal solidification was finished, the content of the elements in the boned interlayer was approximately equal to that of the base metal. But boride and silicide formed in the base metal near the bonded interlayer. And these boride decreased with the increasing of holding time. The bond strength of M series filler metal powder was about 400 MPa.

Effect of Calcination Temperature on the Microstructure and Photocatalytic Activity of Electrospun BiVO4 Nanofiber (전기방사를 이용하여 합성한 BiVO4 나노섬유의 미세구조와 광촉매 특성에 하소 온도가 미치는 영향)

  • Ji, Myeongjun;Kim, Jeong Hyun;Ryu, Cheol-Hui;Ko, Yun Taek;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.226-232
    • /
    • 2020
  • Bismuth vanadate (BiVO4) is considered a potentially attractive candidate for the visible-light-driven photodegradation of organic pollutants. In an effort to enhance their photocatalytic activities, BiVO4 nanofibers with controlled microstructures, grain sizes, and crystallinities are successfully prepared by electrospinning followed by a precisely controlled heat treatment. The structural features, morphologies, and photo-absorption performances of the asprepared samples are systematically investigated and can be readily controlled by varying the calcination temperature. From the physicochemical analysis results of the synthesized nanofiber, it is found that the nanofiber calcines at a lower temperature, shows a smaller crystallite size, and lower crystallinity. The photocatalytic degradation of rhodamine-B (RhB) reveals that the photocatalytic activity of the BiVO4 nanofibers can be improved by a thermal treatment at a relatively low temperature because of the optimization of the conflicting characteristics, crystallinity, crystallite size, and microstructure. The photocatalytic activity of the nanofiber calcined at 350℃ for the degradation of RhB under visible-light irradiation exhibits a greater photocatalytic activity than the nanofibers synthesized at 400℃ and 450℃.

Effect of Brake Timing on Joint Interface Efficiency of Aluminum Composites During Friction Welding (알루미늄 복합재료의 마찰용접시 브레이크 타이밍이 접합계면 효율에 미치는 영향)

  • Kim Hyun-Soo;Park In-Duck;Shinoda Takeshi;Kim Tae-Gyu
    • Journal of Powder Materials
    • /
    • v.13 no.1 s.54
    • /
    • pp.62-67
    • /
    • 2006
  • Friction welding of $Al_2O_3$ particulate reinforced aluminum composites was performed and the following conclusions were drawn from the study of interfacial bonding characteristics and the relationship between experimental parameters of friction welding and interfacial bond strength. Highest bonded joint efficiency (HBJE) approaching $100\%$ was obtained from the post-brake timing, indicating that the bonding strength of the joint is close to that of the base material. For the pre-brake timing, HBJE was $65\%$. Most region of the bonded interface obtained from post-brake timing exhibited similar microstructure with the matrix or with very thin, fine-grained $Al_2O_3$ layer. This was attributed to the fact that the fine-grained $Al_2O_3$ layer forming at the bonding interface was drawn out circumferentially in this process. Joint efficiency of post-brake timing was always higher than that of pre-brake timing regardless of rotation speed employed. In order to guarantee the performance of friction welded joint similar to the efficiency of matrix, it is necessary to push out the fine-grained $Al_2O_3$ layer forming at the bonding interface circumferentially. As a result, microstructure of the bonded joint similar to that of the matrix with very thin, fine-grained $Al_2O_3$ layer can be obtained.

Microstructure and Wear Property of $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ Composites Fabricated by Pressureless Infiltration Method (무가압 침투법에 의해 제조된 $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ 복합재료의 조직 및 마멸특성)

  • Woo, Kee-Do;Kim, Sug-Won;Ahn, Haeng-Keun;Jeong, Jin-Ho
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.254-259
    • /
    • 2000
  • Metal matrix composites(MMCs) reinforced with hard particles have many potential application in aerospace structures, auto parts, semiconductor package, heat resistant panels, wear resistant materials and so on. In this work, the effect of SiC partioel sizes(50 and 100 ${\mu}m$) and additional elements such as Si, Cu and Ti on the microstructure and the wear property of $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ composites produced by pressureless infiltration method have been investigated using optical microscopy, scanning eletron microcopy(SEM) with EDS(energy dispersive spectrometry), hardness test, X-ray diffractometer(XRD) and wear test. In present study, the sound $Al-5Mg-X(Si,Cu,Ti)/SiC_p$(50 and 100 ${\mu}m$) composites were fabricated by pressureless infiltration method. The $Al-5Mg-0.3Si-O.1Cu-O.1Ti/SiC_p$ composite with $50 {\mu}m$ size of SiC particle has higher hardness and better wear property than any other composite with $100{\mu}m$ size of SiC particle produced by pressureless infiltration method. The hardness and wear property of $Al-5Mg/SiC_p$(50 and 100 ${\mu}m$) composites were enhanced by the addition of Si, Cu and Ti in Al-5%Mg matrix alloy.

  • PDF

The effect of Cu and Sb on the microstructure and mechanical properties in Sn-Sb-Cu-Ni-Cd whitemetal (Sn-Sb-Cu-Ni-Cd whitemetal에서 Cu와 Sb가 미세조직과 기계적 특성에 미치는 영향)

  • Kim, Jin-Kon;Kang, Dae-Sung;Kwon, Young-Jun;Kim, Ki-Sung;Sang, Hie-Sun;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.33-37
    • /
    • 2008
  • The effects of Cu and Sb on the microstructure and mechanical properties of Sn-Sb-Cu-Ni-Cd whitemetal were investigated. Any compound phase was not observed in the whitemetal with 0.05 wt% Cu, while as the Cu content was increased, star- or needle-like $Cu_6Sn_5$ phases were found. The tensile strength gradually increased with Cu up to 5 % and then remained almost constant with Cu content above 5 %, while the hardness continuously increased with Cu content because of the increased hard $Cu_6Sn_5$ phases. As the Sb content increased, SbSn cuboids were present as well as $Cu_6Sn_5$. The tensile steength and hardness continuously increased and the elongation decreased with Sb content.

Microstructure and PTCR Behavior of Semiconducting (1-x)$BaTiO_3$ - x$(Bi_{1/2}K_{1/2})TiO_3$ Ceramics ($BaTiO_3$ - $(Bi_{0.5}Ko_{0.5})TiO_3$계 세라믹의 PTC효과와 미세구조)

  • Park, Yong-Jun;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Kim, Dae-Joon;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.336-336
    • /
    • 2008
  • A positive temperature coefficient of electrical resistivity (PTCR) was investigated in a ferroelectric lead-free perovskite-type compound $(Bi_{0.5}K_{0.5})TiO_3$ within $BaTiO_3$-based solid solution ceramics. The electrical properties and the microstructure of (1-x) $BaTiO_3$ - x $(Bi_{0.5}K_{0.5})TiO_3$ (BBKT) ceramics made using a conventional mixed and have been synthesized by an ordinary sintering technique. The Curie temperature was obviously increased with increasing of $(Bi_{0.5}K_{0.5})TiO_3$ content. The BKT ceramics (x=0.05) sintered at $1400^{\circ}C$ for 4h display low resistivity values of $10^1-10^2$ ohm cm at room temperature, PTCR effect(jump) of 1.05*$10^3$, and the Curie temperature of $T_c=141^{\circ}C$.

  • PDF