A Study of Strength, Fracture Toughness and Superconducting Properties of YBCO-Ag Composite Superconductors

YBCO-Ag 복합초전도체의 강도, 파괴인성 및 초전도성질에 관한 연구

  • Joo, Jin-Ho (Dept.of Metallurgical Material Science Engineering, Sungkyunkwan University) ;
  • Ur, Soon-Chul (Dept of Materials Engineering, Chungju National University)
  • 주진호 (성균관대학교 금속재료공학부) ;
  • 어순철 (충주산업대학교 재료공학과)
  • Published : 1998.05.01

Abstract

We have studied the effect of Ag additions on the microstructure and the related mechanical and supercon¬ducting properties of $ YBa_{2}$$Cu_{3}$$O_{7-\delta}$ (YBCO) superconductors. A 5-15 vol.% of Ag was added to YBCO in the forms of Ag and $AgNO_{3}$, powder and the resultant microstructural evolution was evaluated. It was observed that the strength and fracture toughness of YBCO increased with increasing Ag content. These improvements in strength and fracture toughness are believed to be due to the strengthening mechanisms caused by the presence of Ag. In addition, YBCO-Ag composite superconductors showed higher values of strength and fracture toughness when Ag was added in the form of AgNO, than those of which was added Ag. The higher mechanical properties of YBCO- Ag resulting from $AgNO_{3}$, addition are probably due to the microstructure of more finely and uniformly distributed Ag particles. The addition of Ag also showed slightly improved critical current density of YBCO superconductors.

은(Ag)의 첨가가$ YBa_{2}$$Cu_{3}$$O_{7-\delta}$ (YBCO) 고온초전도체의 미세조직, 기계적 및 전기적 성질에 미치는 효과를 연구하였다. 소량의 Af(5, 10, 15 vol.%)는 각각 금속분말상태와 질산염인 $AgNO_{3}$초전도체의 강도와 인성값이 Ag의 함량이 증가할수록 높게 나타났으며, 이는 Ag입자에 의해 야기되는 강화기루에 의한 것으로 생각된다. 또한 Ag를 질산염의 분말상태로 첨가하여 만든 YBCO-Ag 복합재료가 금속분말상태로 첨가하여 만들었을 때보다 강도 및 인성값이 더 우수한 것으로 나타났다. $AgNO_{3}$를 첨가한 복합체가 상대적으로 더 우수한 기계적 성질을 가지는 것은 Ag 입자가 더 미세하고 균일하게 분포되었기 때문으로 판단된다. Ag 첨가로 인해 YBCO 복합초전도체의 전류밀도값은 미세하게 증가하는 것으로 관찰되었다.

Keywords

References

  1. J. Mater. Sci. v.23 N. McN. Alford;J.D.Birchall;W.J.Clegg;M.A.Harmer;K.Kendall;D.H.Hones
  2. J. Appl. Phys. v.66 J.P.Singh;H.J.Leu;R.B.Poeppel;E.Van Voorhees;G.T.Goudey;K.Winsley;D.Shi
  3. J. Mater. Sci. & Eng. Chan-Joong Kim;Ki-Baik Kim;Il-Hyun Kuk;Gye-Won Hong;Suk-Woo Yang;Hyung-Shik Shin
  4. Physica C v.204 B.Roper;J.Carmona;S.Flandroiss
  5. M.S.thesis, Illinois Institute of Technology D.Chen
  6. Supercond. Sci. Technol. v.10 E.Mogilko;Y.Schlesinger
  7. J. Amer. Ceram. Soc. v.74 no.7 Ji-Pang Zhou;Charles C. Sorrell;Shi-Xue Dou;Miles. H. Apperley
  8. Private communications J.P.Singh
  9. Physica C v.170 Ronald E. Loehman;A.P.Tomsia;J.A.Pask;Altaf H. Carim
  10. J. Appl. Phys. v.66 D.S.Kupperman;J.P.Singh;J.Faber,Jr.;R.L.Hitterman
  11. J. Appl. Phys. v.31 J.Gilman
  12. Acta. Metall. v.31 no.4 K.T.Faber;A.G.Evans
  13. Acta. Metall. v.34 no.12 A.G.Evans;R.M.McMeeking
  14. Supercon. Sci. & Technol. Jinho Joo;Jung-Gu Kim;Wansoo Nah
  15. Appl. Phys. Lett. v.52 S.Jin;T.H.Tiefel;R.C.Sherwood;M.E.Davis;R.B.Van Dover;G.W.Kammlott;R.A.Fastnacht;H.D.Keith
  16. Solid State Communications v.71 no.5 F.Deslandes;B.Raveau;P.Dubots;D.Legat
  17. Appl. Phys. Lett. v.55 no.4 B.Dwir;M.Affronte;D.Pavuna
  18. Appl. Superconductivity v.2 no.6 J.Joo;J.P.Singh;T.Warzynski;A.Grow;R.B.Poeppel
  19. Jpn. J. Appl. Physics v.28 no.4 Nobuhito Imanaka;Fumihiko Saito;Hisao Imai;Gin-ya Adachi