DOI QR코드

DOI QR Code

Effect of Calcination Temperature on the Microstructure and Photocatalytic Activity of Electrospun BiVO4 Nanofiber

전기방사를 이용하여 합성한 BiVO4 나노섬유의 미세구조와 광촉매 특성에 하소 온도가 미치는 영향

  • Ji, Myeongjun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kim, Jeong Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ryu, Cheol-Hui (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ko, Yun Taek (R&D Center, Coway Entech) ;
  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 지명준 (서울과학기술대학교 신소재공학과) ;
  • 김정현 (서울과학기술대학교 신소재공학과) ;
  • 류철희 (서울과학기술대학교 신소재공학과) ;
  • 고윤택 (코웨이엔텍 연구팀) ;
  • 이영인 (서울과학기술대학교 신소재공학과)
  • Received : 2020.06.15
  • Accepted : 2020.06.22
  • Published : 2020.06.28

Abstract

Bismuth vanadate (BiVO4) is considered a potentially attractive candidate for the visible-light-driven photodegradation of organic pollutants. In an effort to enhance their photocatalytic activities, BiVO4 nanofibers with controlled microstructures, grain sizes, and crystallinities are successfully prepared by electrospinning followed by a precisely controlled heat treatment. The structural features, morphologies, and photo-absorption performances of the asprepared samples are systematically investigated and can be readily controlled by varying the calcination temperature. From the physicochemical analysis results of the synthesized nanofiber, it is found that the nanofiber calcines at a lower temperature, shows a smaller crystallite size, and lower crystallinity. The photocatalytic degradation of rhodamine-B (RhB) reveals that the photocatalytic activity of the BiVO4 nanofibers can be improved by a thermal treatment at a relatively low temperature because of the optimization of the conflicting characteristics, crystallinity, crystallite size, and microstructure. The photocatalytic activity of the nanofiber calcined at 350℃ for the degradation of RhB under visible-light irradiation exhibits a greater photocatalytic activity than the nanofibers synthesized at 400℃ and 450℃.

Keywords

References

  1. L. V. Bora and R. K. Mewada: Renew. Sust. Energ. Rev., 76 (2017) 1393. https://doi.org/10.1016/j.rser.2017.01.130
  2. Y. Nosaka and A. Y. Nosaka: Chem. Rev., 117 (2017) 11302. https://doi.org/10.1021/acs.chemrev.7b00161
  3. K. Wetchakun, N. Wetchakun and S. Sakulsermsuk: J. Ind. Eng. Chem., 71 (2019) 19. https://doi.org/10.1016/j.jiec.2018.11.025
  4. J. Fu, J. Yu, C. Jiang and B. Cheng: Adv. Energy Mater., 8 (2017) 1701503. https://doi.org/10.1002/aenm.201701503
  5. S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun and J. Sun: RSC Adv., 5 (2015) 14610. https://doi.org/10.1039/C4RA13734E
  6. W. Zhang, H. He, Y. Tian, H. Li, K. Lan, L. Zu, Y. Xia, L. Duan, W. Li and D. Zhao: Nano Energy, 66 (2019) 104113. https://doi.org/10.1016/j.nanoen.2019.104113
  7. J. Chen, F. Qiu, W. Xu, S. Cao and H. Zhu: Appl. Catal. A, 495 (2015) 131. https://doi.org/10.1016/j.apcata.2015.02.013
  8. Y. Lin, C. Lu and C. Wei: J. Alloy Compd., 781 (2019) 56. https://doi.org/10.1016/j.jallcom.2018.12.071
  9. M. Hojamberdiev, G. Zhu, Z. C. Kadirova, J. Han, J. Liang, J. Zhou, X. Wei and P. Liu: Mater. Chem. Phys., 165 (2015) 188. https://doi.org/10.1016/j.matchemphys.2015.09.015
  10. R. Yang, Y. Fan and R. Zhu: Mater. Res. Bull., 124 (2020) 110756. https://doi.org/10.1016/j.materresbull.2019.110756
  11. I. Khan, S. Ali, M. Mansha and A. Qurashi: Ultrason. Sonochem., 36 (2017) 386. https://doi.org/10.1016/j.ultsonch.2016.12.014
  12. M. M. Sajid, N. Amin, N. A. Shad, S. B. Khan, Y. Javed and Z. Zhang: Mater. Sci. Eng. B, 242 (2019) 83. https://doi.org/10.1016/j.mseb.2019.03.012
  13. B. Weng, S. Liu, Z.-R. Tang and Y.-J. Xu: RSC Adv., 4 (2014) 12685. https://doi.org/10.1039/c3ra47910b
  14. J. Xue, T. Wu, Y. Dai and Y. Xia: Chem. Rev., 119 (2019) 5298. https://doi.org/10.1021/acs.chemrev.8b00593
  15. W.-S. Chen, D.-A. Huang, H.-C. Chen, T.-Y. Shie, C.-H. Hsieh, J.-D. Liao and C. Kuo: Cryst. Growth Des., 9 (2009) 4070. https://doi.org/10.1021/cg900297q
  16. C. Eid, D. Luneau, V. Salles, R. Asmar, Y. Monteil, A. Khoury and A. Brioude: J. Phys. Chem. C, 115 ( 2011) 17643. https://doi.org/10.1021/jp203426j
  17. C. S. Turchi and D. F. Ollis: J. Catal., 122 (1990) 178. https://doi.org/10.1016/0021-9517(90)90269-P
  18. G.-D. Lim, J.-H. Yoo, M. Ji and Y.-I. Lee: J. Alloy Compd., 806 (2019) 1060. https://doi.org/10.1016/j.jallcom.2019.07.319