• 제목/요약/키워드: microstructural factors

검색결과 89건 처리시간 0.019초

펄라이트 강 선재 인발에서 미세조직 변화 모델링 (Modeling Microstructural Changes in Steel Wire Drawing)

  • 윤상헌;이용신;남원종;박경태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.271-272
    • /
    • 2008
  • This paper is concerned with the prediction of micro structural changes of pearlitic steel wire during clod drawing. The most important microstructural aspects are ferrite/cementite interlamellar spacing, cementite shape and thickness, since those are crucial factors to determine the mechanical strength of pearlitic steel. In this study, a couple of new algorithms to predict the above microstructural changes are developed based on the deformation histories of macro material points obtained from finite element simulations for pearlitic steel wire drawing. Some predictions are shown. The special features of the algorithms developed in this study are discussed in details.

  • PDF

미량 Sn을 함유한 AZ91 마그네슘 합금의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of AZ91 Magnesium Alloy Containing a Small Amount of Sn)

  • 전중환
    • 열처리공학회지
    • /
    • 제27권3호
    • /
    • pp.115-120
    • /
    • 2014
  • Microstructural features were comparatively investigated in AZ91 (Mg-9%Al-1%Zn) and AZ91-0.5%Sn alloys, in order to clarify the reason for the enhancement in room temperature tensile properties by the addition of small amount of Sn in Mg-Al-based alloy. In as-cast state, the Sn-containing alloy showed increased YS, UTS and elongation than the Sn-free alloy. The microstructural examination revealed that various factors including finer cell size, reduction of lamellar (${\alpha}+{\beta}$) phase and morphological change of bulky ${\beta}$ phase from partially divorced shape to fully divorced shape, are likely to be responsible for the improvement in tensile properties for the Sn-containing alloy. It is noted that two alloys showed similar tensile properties after solution treatment. This implies that microstructural evolution related to the ${\beta}$ phase plays a key role in better tensile properties in the Sn-containing alloy.

고강도-신장플랜지성 열연강의 미세조직 및 기계적 성질 (Microstructure and Mechanical Properties of High Strength and Stretch-Flangeability Hot-Rolled Steels)

  • 천은준;이주승;도형협;김성주;박용호;강남현
    • 한국재료학회지
    • /
    • 제22권1호
    • /
    • pp.16-23
    • /
    • 2012
  • Research into the development of high strength (1 GPa) and superior formability, such as total elongation (10%), and stretch-flangeability (50%) in hot-rolled steel was conducted with a thermomechanically controlled hot-rolling process. To improve the overall mechanical properties simultaneously, low-carbon steel using precipitation hardening of Ti-Nb-V multimicroalloying elements was employed. And, ideal microstructural characteristics for the realization of balanced mechanical properties were determined using SEM, EBSD, and TEM analyses. The developed steel, 0.06C-2.0Mn-0.5Cr-0.2(Ti + Nb + V), consisted of ferrite as the matrix phase and second phase of granular bainite with fine carbides (20-50 nm) in both phases. The significant factor of the microstructural characteristics that affect stretch-flangeability was found to be the microstructural homogeneity. The microstructural homogeneity, manifest in such characteristics as low localization of plastic strain and internally stored energy, was identified by grain average misorientation method, analyzed by electron backscattered diffraction (EBSD) and hardness deviation between the phases. In summar, a hot-rolled steel having a composition 0.06C-2.0Mn-0.5Cr-0.2(Ti + Nb + V) demonstrated a tensile strength of 998 MPa, a total elongation of 19%, and a hole expansion ratio of 65%. The most important factors to satisfy the mechanical property were the presence of fine carbides and the microstructural homogeneity, which provided low hardness deviation between the phases.

펄라이트 함유강에서 연성에 영향을 미치는 미세조직 인자 (Microstructural Factors on Ductility in Steels containing Pearlite)

  • 심혜정;송형락;남원종
    • 소성∙가공
    • /
    • 제13권5호
    • /
    • pp.415-421
    • /
    • 2004
  • The effect of transformation temperature on microstructural features and their effects on ductility in 0.55%C steels were investigated, compared with in 0.82%C eutectoid steel. The samples were austenitized at 100$0^{\circ}C$ for 30min. followed by quenching in a salt bath in the temperature range of 500 ~ $620^{\circ}C$. It was found that reduction of area(RA) increased with increasing transformation temperature and then, decreased after reaching its maximum value in steels containing pro-eutectoid ferrite less than 6%. The thickness of lamellar cementite was found to be the main factor controlling RA. Additionally, the presence of cementite thickness for the maximum ductility in all the tested steels was observed as about 0.015${\mu}{\textrm}{m}$ for tested steels.

탄소강 조직의 형상 및 분포에 따른 유한요소해석 (Finite Element Analysis of Carbon Steel according to Shape and Distribution of Phase)

  • 서대철;이덕희;이정주;남수우;주웅용
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.780-790
    • /
    • 1997
  • In this study, the stress-strain relations of steels have been calculated as a function of microstructural morphologies of each phase by use of FEM program(i.e. ABAQUS). The mechanical behavior of low carbon steels is affected by the microstructural factors such as yield ratio, volume fraction, shape and distribution of each phase and so on. The effects of shape, volume fraction and yield ratio of each phase on the mechanical behavior were analyzed by using unit cell and whole specimen size models. Results obtained are summarized as follows. As the yield ratio of hard phase to that of soft phase and volume fraction of hard phase were increased, stress level of flow curves were increased. It was found that in whole specimen size model, as the particle size was decreased, higher stress level was shown. Lastly the relationship between microstructure and tensile properties was examined by using the steels with various microstructural morphologies.

複合組織鋼의 衝擊에너지에 미치는 母相粒徑에 영향 (Effect of Ferrite Grain Size on Impact Energy of Dual Phase Steel)

  • 김정규;유승원;박영조
    • 대한기계학회논문집
    • /
    • 제7권4호
    • /
    • pp.398-403
    • /
    • 1983
  • In this investigation, the effect of microstructural factors on the impact energy was studied, using dual phase steels with soft phase of ferrite encapsulated by hard phase of martensite. It was found that the effect of the ferrite grain size on the impact energy decreases as the strength ratio increases, these results are due to the micro-brittlefracture facet by the difficulty of cleavage crack formation in the ferrite grain.

NUMERICAL APPROACH TO MICROSTRUCTURAL CHARACTERIZATIONS FOR DENSE AND POROUS THERMAL BARRIER COATINGS

  • Kim, Seok-Chan;Go, Jae-Gwi;Jung, Yeon-Gil;Paik, Un-Gyu
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제15권3호
    • /
    • pp.223-231
    • /
    • 2011
  • During spray coating, especially in an air plasma spray (APS), pores, cracks, and splat boundaries are developed and those factors exert influence on thermomechanical properties such as elastic modulus, thermal conductivity, and coefficient of thermal expansion. Moreover, the thermo mechanical properties are crucial elements to determine the thermoelastic characteristics, for instance, temperature distribution, displacements, and stresses. Two types of thermal barrier coating (TBC) model, the dense and porous microstructures, are taken into account for the analysis of microstructural characterizations. $TriplexPro^{TM}$-200 system was applied to prepare TBC samples, and the METECO 204 C-NS powder is adopted for the relatively porous microstructure and METECO 204 NS powder for the dense microstructure in the top coat of TBCs. Governing partial differential equations were derived based on the thermoelastic theory and approximate estimates for the thermoelastic characteristics were obtained using a finite volume method for the governing equations.

대두 단백섬유의 미세구조 연구 (Microstructural analyses of soyprotein fibers)

  • 김지천;조숙자;변평화;윤석권;이기춘;변시명
    • Applied Biological Chemistry
    • /
    • 제34권4호
    • /
    • pp.353-359
    • /
    • 1991
  • 대두단백 섬유의 texture 분석을 위한 도구로서, 그들의 미세구조를 관찰하였다. 미세구조와 texture profile analysis 결과, 대두단백 섬유의 구조를 유지 및 결정하는 인자중 disulfide 결합과 수소결합이 가장 중요한 인자중의 하나임을 확인하였다. 이와함께 대두단백 섬유의 원료물질인 대두단백질 수화물과 dope의 미세구조도 관찰하였다.

  • PDF

AZ91 마그네슘합금의 부식거동 (Corrosion Behavior of AZ91 Magnesium Alloy)

  • 임창동;김영민;박성혁;유봉선
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.619-627
    • /
    • 2012
  • One of the barriers limiting wide applications of magnesium alloys to various industries is their poor corrosion resistance. The corrosion properties of AZ91 magnesium alloy, which is the most popular magnesium casting alloy, are affected by microstructural and environmental factors. The corrosion properties of AZ91 magnesium alloy are affected by the corrosion properties of ${\alpha}-Mg$ and ${\beta}$ phases, the volume fraction and distribution of ${\beta}$ phase and area ratio of ${\alpha}-Mg/{\beta}$ phases. The corrosion properties of AZ91 magnesium alloy under various environments also change according to the passivity of films and types of corrosion products formed on its surface. The corrosion resistance of the magnesium alloys can be improved by microstructural control through the addition of alloying elements and optimization of the production process.