DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties of AZ91 Magnesium Alloy Containing a Small Amount of Sn

미량 Sn을 함유한 AZ91 마그네슘 합금의 미세조직 및 기계적 특성

  • Jun, Joong-Hwan (Advanced Fusion Process and Materials R&BD Group, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 융합공정신소재연구실용화그룹)
  • Received : 2014.02.13
  • Accepted : 2014.02.27
  • Published : 2014.05.30

Abstract

Microstructural features were comparatively investigated in AZ91 (Mg-9%Al-1%Zn) and AZ91-0.5%Sn alloys, in order to clarify the reason for the enhancement in room temperature tensile properties by the addition of small amount of Sn in Mg-Al-based alloy. In as-cast state, the Sn-containing alloy showed increased YS, UTS and elongation than the Sn-free alloy. The microstructural examination revealed that various factors including finer cell size, reduction of lamellar (${\alpha}+{\beta}$) phase and morphological change of bulky ${\beta}$ phase from partially divorced shape to fully divorced shape, are likely to be responsible for the improvement in tensile properties for the Sn-containing alloy. It is noted that two alloys showed similar tensile properties after solution treatment. This implies that microstructural evolution related to the ${\beta}$ phase plays a key role in better tensile properties in the Sn-containing alloy.

Keywords

References

  1. B. L. Mordike and T. Ebert : Mater. Sci. Eng. A, 302(2001) 37. https://doi.org/10.1016/S0921-5093(00)01351-4
  2. H. Kang and D.H. Bae : Mater. Sci. Eng. A, 582(2013) 203. https://doi.org/10.1016/j.msea.2013.05.078
  3. L. Zhang, J. Zhang, Z. Leng, S. Liu, Q. Yang, R. Wu and M. Zhang : Mater. Des., 54 (2014) 256. https://doi.org/10.1016/j.matdes.2013.08.048
  4. H. Cao and M. Wessen : Metall. Mater. Trans. A, 35A (2004) 309.
  5. G. Petterson, H. Westengen, R. Hoier and O. Lohne : Mater. Sci. Eng. A, 207 (1006) 115.
  6. A. Srinivasan, U. T. S. Pillai and B. C. Pai : Mater. Sci. Eng. A, 527 (2010) 6543. https://doi.org/10.1016/j.msea.2010.07.020
  7. N. D. Saddock, A. Suzuki, J. W. Jones and T. M. Pollock : Scripta Mater., 63 (2010) 692. https://doi.org/10.1016/j.scriptamat.2010.03.055
  8. Y. Chino, Y. Nakaura, K. Ohori, A. Kamiya and M. Mabuchi : Mater. Sci. Eng. A, 452-453 (2007) 31. https://doi.org/10.1016/j.msea.2006.12.118
  9. Y. Turen : Mater. Des., 49 (2013) 1009. https://doi.org/10.1016/j.matdes.2013.02.037
  10. R. Mahmudi and S. Moeendarbari : Mater. Sci. Eng. A, 566 (2013) 30. https://doi.org/10.1016/j.msea.2012.12.076
  11. R. G. Li, Y. Xu, W. Qi, J. An, Y. Lu, Z. Y. Cao and Y. B. Liu : Mater. Charact., 59 (2008) 1643. https://doi.org/10.1016/j.matchar.2008.03.005
  12. M. X. Zhang and P. M. Kelly : Scripta Mater., 48 (2003) 647. https://doi.org/10.1016/S1359-6462(02)00555-9
  13. A. K. Dahle, Y. C. Lee, M. D. Nave, P. L. Schaffer and D. H. StJohn : J. Light Met., 1 (2001) 61. https://doi.org/10.1016/S1471-5317(00)00007-9
  14. H. Okamoto : "Phase diagram for binary alloys", ASM International, Materials Park, OH, p. 36.
  15. M. Yang, C. Qin and F. Pan : Trans. Nonferrous Met. Soc. China, 21 (2011) 2168. https://doi.org/10.1016/S1003-6326(11)60990-4