• Title/Summary/Keyword: microscopy (electron, scanning)

Search Result 5,053, Processing Time 0.04 seconds

1-D and 2-D Metal Oxide Nanostructures

  • Son, Yeong-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.87-88
    • /
    • 2012
  • Metal oxide nanostructures have been applied to various fields such as energy, catalysts and electronics. We have freely designed one and two-dimensional (1 and 2-D) metal (transition metals and lanthanides) oxide nanostructures, characterized them using various techniques including scanning electron microscopy, transmission electron microscopy, X-ray diffraction crystallography, thermogravimetric analysis, FT-IR, UV-visible-NIR absorption, Raman, photoluminescence, X-ray photoelectron spectroscopy, and temperature-programmed thermal desorption (reaction) mass spectrometry. In addition, Ag- and Au-doped metal oxides will be discussed in this talk.

  • PDF

Teliospore mucilage of Puccinia miscanthi revealed through the axial imaging of secondary electrons

  • Ki Woo Kim
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.15.1-15.2
    • /
    • 2021
  • Puccinia miscanthi teliospores were observed on the leaf surface of Miscanthus sinensis using a field emission scanning electron microscope. Details of teliospore mucilage could be visualized through the axial imaging of secondary electrons for a better understanding of pathogen behavior in rust diseases.

A Note on Biogenic Effects of Coralloid Speleothems in Round Mountain Lava Cave, Oregon, U.S.A.

  • Kashima, Naruhiko;Ogawa, Takanori
    • Journal of the speleological society of Korea
    • /
    • v.9
    • /
    • pp.3-7
    • /
    • 1999
  • Corralloid speleothems from Round Mountain lave cave are are studied by scanning microscope and electron microprobe analyses. Scanning microscopy observation indicates that the diatom Melosira seems to contribute significantly to siliceous coralloid speleothems Electron microprobe confirms the presence of diatom and fragmental minerals(plagioclase and orthopyroxene) in coralloid speleothems. Chemical analysis of 3 diatom cells gives SiO2(74.8%), Al2O3(0.12%), FeO(0.11%), CaO(0.47%) and MgO(0.81%).

  • PDF

PBMS의 교정 및 이를 이용한 진공 내 나노입자의 실시간 분석 연구

  • Kim, Dong-Bin;Mun, Ji-Hun;Kim, Hyeong-U;Kim, Deuk-Hyeon;Lee, Jun-Hui;Gang, Sang-U;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.91-91
    • /
    • 2015
  • 반도체 공정의 발전에 의해 최근 생산되는 메모리 등은 십 수 나노미터까지 좁아진 선 폭을 갖게 되었다. 이러한 이유로, 기존에는 큰 문제를 발생시키지 않던 나노미터 영역의 입자들이 박막 증착 공정과 같은 반도체 제조공정 수율을 저감시키게 되었다. 따라서 오염입자의 유입을 막거나 제어하기 위해 transmission electron microscopy (TEM)나 scanning electron microscopy (SEM)과 같은 전자현미경을 활용한 비 실시간 입자 측정 방법 및 광원을 이용하는 in-situ particle monitor (ISPM) 및 전기적 이동도를 이용한 scanning mobility particle sizer (SMPS) 등 다양한 원리를 이용한 실시간 입자 측정방법이 현재 사용중에 있다. 이 중 진공 내 입자의 수농도를 측정하기 위해 개발된 particle beam mass spectrometer (PBMS) 기술은 박막 증착 공정 등 chemical vapor deposition (CVD) 방법을 이용하는 진공공정에서 활용 가능하여 개발이 진행되어 왔다. 본 연구에서는 PBMS의 한계점인 입자 밀도, 형상 등의 특성분석이 용이하도록 PBMS와 scanning electron microscopy (SEM), 그리고 energy dispersive spectroscopy (EDS) 기술을 결합하여 입자의 직경별 개수농도, 각 입자의 형상 및 성분을 함께 측정 가능하도록 하였다. 협소한 반도체 제조공정 내부 공간에 적용 가능하도록 기존 PBMS 대비 크기 또한 소형화 하였다. 각 구성요소인 공기역학 집속렌즈, electron gun, 편향판, 그리고 패러데이 컵의 설치 및 물리적인 교정을 진행한 후 입자발생장치를 통해 발생시킨 sodium chloride 입자를 상압 입자 측정 및 분류장치인 SMPS 장치를 이용하여 크기별로 분류시켜 압력차를 통해 PBMS로 유입시켜 측정을 진행하였다. 나노입자의 입경분포, 형상 및 성분을 측정결과를 토대로 장치의 측정정확도를 교정하였다. 교정된 장치를 이용하여 실제 박막 증착공정 챔버의 배기라인에서 발생하는 입자의 수농도, 형상 및 성분의 복합특성 측정이 가능하였으며, 최종적으로 실제 공정에 적용가능하도록 장치 교정을 완료하였다.

  • PDF

Quantitative Analysis of Pulp fiber Characteristics that Affect Paper Properties (II) (종이의 물성에 영향하는 섬유특성의 정량적 해석(II))

  • 이강진;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.2
    • /
    • pp.35-39
    • /
    • 2000
  • Refining is very important process of fibers treatment for proper paper properties. An extent of refining is usually measured by freeness, although freeness gives complicated meanings. One of a direct way of studying the refining effects on pulp fibers is making photomicrographs of beaten fibers. The conventional microscopy like light microscopy(LM) and scanning electron microscopy(SEM) require to preserve the wet structure of pulp fibers morphologically since most of papermaking process is carried out almost entirely in water. Recently developed microscopy, especially confocal laser scanning microscopy(CLSM), offers the possibility of examining fully hydrated pulp fibers. Cross-sectional images of wet pulp fibers are also generated using optical sectioning by CLSM and image analysis in order to verify and quantify the extent of fiber wall swelling indicating the internal fibrillation. At low beating load such as 2.5 kgf, in the same freeness, breaking length is higher than that of high beating load such as 5.6 kgf. fiber wall thickness at low beating load is greater than that at high beating load. This result is accounted for the fact that internal fibrillation in the low beating load was high.

  • PDF

Applications of Scanning Electrochemical Microscopy (SECM) Coupled to Atomic Force Microscopy with Sub-Micrometer Spatial Resolution to the Development and Discovery of Electrocatalysts

  • Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.316-326
    • /
    • 2016
  • Development and discovery of efficient, cost-effective, and robust electrocatalysts are imperative for practical and widespread implementation of water electrolysis and fuel cell techniques in the anticipated hydrogen economy. The electrochemical reactions involved in water electrolysis, i.e., hydrogen and oxygen evolution reactions, are complex inner-sphere reactions with slow multi-electron transfer kinetics. To develop active electrocatalysts for water electrolysis, the physicochemical properties of the electrode surfaces in electrolyte solutions should be investigated and understood in detail. When electrocatalysis is conducted using nanoparticles with large surface areas and active surface states, analytical techniques with sub-nanometer resolution are required, along with material development. Scanning electrochemical microscopy (SECM) is an electrochemical technique for studying the surface reactions and properties of various types of electrodes using a very small tip electrode. Recently, the morphological and chemical characteristics of single nanoparticles and bio-enzymes for catalytic reactions were studied with nanometer resolution by combining SECM with atomic force microscopy (AFM). Herein, SECM techniques are briefly reviewed, including the AFM-SECM technique, to facilitate further development and discovery of highly active, cost-effective, and robust electrode materials for efficient electrolysis and photolysis.

Application of Autofluorescence for Confocal Microscopy to Aid in Archaeoparasitological Analyses

  • Morrow, Johnica Jo;Elowsky, Christian
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.6
    • /
    • pp.581-585
    • /
    • 2019
  • Confocal laser scanning microscopy (CLSM) was used to examine archaeoparasitological specimens from coprolites associated with La Cueva de los Muertos Chiquitos (CMC) located near present-day Durango, Mexico. The eggs for 4 different types of parasites recovered from CMC coprolites were imaged using CLSM to assist with identification efforts. While some of the parasite eggs recovered from CMC coprolites were readily identified using standard light microscopy (LM), CLSM provided useful data for more challenging identifications by highlighting subtle morphological features and enhancing visualization of parasite egg anatomy. While other advanced microscopy techniques, such as scanning electron microscopy (SEM), may also detect cryptic identifying characters, CLSM is less destructive to the specimens. Utilizing CLSM allows for subsequent examinations, such as molecular analyses, that cannot be performed following SEM sample preparation and imaging. Furthermore, CLSM detects intrinsic autofluorescence molecules, making improved identification independent of resource and time-intensive protocols. These aspects of CLSM make it an excellent method for assisting in taxonomic identification and for acquiring more detailed images of archaeoparasitological specimens.

Depth-dependent EBIC microscopy of radial-junction Si micropillar arrays

  • Kaden M. Powell;Heayoung P. Yoon
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.17.1-17.9
    • /
    • 2020
  • Recent advances in fabrication have enabled radial-junction architectures for cost-effective and high-performance optoelectronic devices. Unlike a planar PN junction, a radial-junction geometry maximizes the optical interaction in the three-dimensional (3D) structures, while effectively extracting the generated carriers via the conformal PN junction. In this paper, we report characterizations of radial PN junctions that consist of p-type Si micropillars created by deep reactive-ion etching (DRIE) and an n-type layer formed by phosphorus gas diffusion. We use electron-beam induced current (EBIC) microscopy to access the 3D junction profile from the sidewall of the pillars. Our EBIC images reveal uniform PN junctions conformally constructed on the 3D pillar array. Based on Monte-Carlo simulations and EBIC modeling, we estimate local carrier separation/collection efficiency that reflects the quality of the PN junction. We find the EBIC efficiency of the pillar array increases with the incident electron beam energy, consistent with the EBIC behaviors observed in a high-quality planar PN junction. The magnitude of the EBIC efficiency of our pillar array is about 70% at 10 kV, slightly lower than that of the planar device (≈ 81%). We suggest that this reduction could be attributed to the unpassivated pillar surface and the unintended recombination centers in the pillar cores introduced during the DRIE processes. Our results support that the depth-dependent EBIC approach is ideally suitable for evaluating PN junctions formed on micro/nanostructured semiconductors with various geometry.

Property of molecular beam epitaxy-grown ZnSe/GaAs (분자선 에피성장법으로 성장된 ZnSe/GaAs의 특성)

  • Kim, Eun-Do;Son, Young-Ho;Cho, Seong-Jin;Hwang, Do-Weon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.2
    • /
    • pp.52-56
    • /
    • 2007
  • We have installed an ultra high vacuum (UHV) molecular beam epitaxy (MBE) system and investigated into the characteristics of MBE-grown ZnSe/GaAs [001] using scanning electron microscopy (SEM), atomic force microscopy (AFM), we confirmed that layer's surface was dense and uniform of molecular layer. We used x-ray diffractometer (XRD) and confirmed two peaks correspond to GaAs [001] substrate and ZnSe epilayer, respectively. We observed photoluminescence (PL) peak approximately at 437 nm and measured PL mapping of 2 inch ZnSe epilayer.

플라즈마 분자선 에피택시에 의해 성장 멈춤법으로 증착된 완충층에 성장된 ZnO 박막의 특성 변화

  • Im, Gwang-Guk;Kim, Min-Su;Kim, So-ARam;Nam, Gi-Ung;Park, Dae-Hong;Cheon, Min-Jong;Lee, Dong-Yul;Kim, Jin-Su;Kim, Jong-Su;Lee, Ju-In;Im, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.83-83
    • /
    • 2011
  • 본 연구에서는 p-type Si (100) 위에 분자선 에피택시 성장방법으로 ZnO 완충층이 삽입된 ZnO 박막을 성장시켰다. ZnO 완충층은 Zn 셀 셔터의 열림/닫힘을 반복하는 성장 멈춤법으로 성장되었다. Zn 셀 셔터의 열림 시간은 4분, 2분, 1분이며 닫힘 시간은 2분으로 동일하게 유지하였다. 이러한 과정은 각각 5, 10, 20회로 반복되었으며 ZnO 완충층을 성장한 후 ZnO 박막은 기존의 분자선 에피택시 방법으로 성장되었다. ZnO 박막의 구조적, 광학적 특성은 field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), photoluminescence (PL)로 조사하였다. SEM 측정결과 성장 멈춤 횟수가 증가함에 따라 ZnO 박막의 표면은 섬(island) 구조에서 미로(maze) 구조로 변화하였고, XRD 측정결과 full-width at half-maximum (FWHM) 이 감소하고 결정립 크기(grain size)가 증가하였다. 그리고 PL 측정결과 성장 멈춤 횟수가 증가함에 따라 near-band-edge emission (NBE) 피크의 세기가 증가하였고 deep-level emission (DLE) 피크의 위치는 오렌지 발광에서 녹색 발광으로 청색편이(blue-shift)하였다.

  • PDF