DOI QR코드

DOI QR Code

Applications of Scanning Electrochemical Microscopy (SECM) Coupled to Atomic Force Microscopy with Sub-Micrometer Spatial Resolution to the Development and Discovery of Electrocatalysts

  • Park, Hyun S. (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2016.08.05
  • Accepted : 2016.09.19
  • Published : 2016.12.31

Abstract

Development and discovery of efficient, cost-effective, and robust electrocatalysts are imperative for practical and widespread implementation of water electrolysis and fuel cell techniques in the anticipated hydrogen economy. The electrochemical reactions involved in water electrolysis, i.e., hydrogen and oxygen evolution reactions, are complex inner-sphere reactions with slow multi-electron transfer kinetics. To develop active electrocatalysts for water electrolysis, the physicochemical properties of the electrode surfaces in electrolyte solutions should be investigated and understood in detail. When electrocatalysis is conducted using nanoparticles with large surface areas and active surface states, analytical techniques with sub-nanometer resolution are required, along with material development. Scanning electrochemical microscopy (SECM) is an electrochemical technique for studying the surface reactions and properties of various types of electrodes using a very small tip electrode. Recently, the morphological and chemical characteristics of single nanoparticles and bio-enzymes for catalytic reactions were studied with nanometer resolution by combining SECM with atomic force microscopy (AFM). Herein, SECM techniques are briefly reviewed, including the AFM-SECM technique, to facilitate further development and discovery of highly active, cost-effective, and robust electrode materials for efficient electrolysis and photolysis.

Keywords

References

  1. N. Armaroli and V. Balzani, Angew. Chem. Int. Ed, 2007, 46(1-2), 52-66. https://doi.org/10.1002/anie.200602373
  2. T. H. Jeon, S. K. Choi, H. W. Jeong, S. Kim and H. Park, J. Electrochem. Sci. Technol, 2011, 2(4), 187-192. https://doi.org/10.5229/JECST.2011.2.4.187
  3. A. Fujishima and K. Honda, Nature, 1972, 238, 37-38. https://doi.org/10.1038/238037a0
  4. J.D. Holladay, J. Hu, D.L. King and Y. Wang, Catal. Today, 2009, 139(4), 244-260. https://doi.org/10.1016/j.cattod.2008.08.039
  5. S.Y. Reece, J. A. Hamel, K. Sung, T.D. Jarvi, A.J. Esswein, J. J. Pijpers and D.G. Nocera, Scienc, 2011, 334(6056), 645-648. https://doi.org/10.1126/science.1209816
  6. O. Khaselev and J.A. Turner, Science, 1998, 280(5362), 425-427. https://doi.org/10.1126/science.280.5362.425
  7. A.J. Bard, J. Am. Chem. Soc, 2010, 132(22), 7559-7567. https://doi.org/10.1021/ja101578m
  8. A. J. Bard and M.A. Fox, Acc. Chem. Res, 1995, 28(3), 141-145. https://doi.org/10.1021/ar00051a007
  9. A. Kubacka, M. Fernandez-Garcia and G. Golon, Chem. Rev., 2012, 112(3), 1555-1614. https://doi.org/10.1021/cr100454n
  10. I.C. Man, H.-Y. Su, F. Calleo-Vallejo, H. A. Hansen, J. I. Martinez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Jaramillo and J. Rossmeial, ChemCatChem, 2011, 3(7), 1159-1165. https://doi.org/10.1002/cctc.201000397
  11. R.D.L. Smith, M.S. Prevot, R.D. Fagan, Z. Zhang, P.A. Sedach, M.K.J. Siu, S. Trudel and C.P. Berlinguette, Science, 2013, 340(6128), 60-63. https://doi.org/10.1126/science.1233638
  12. H. Ye, H.S. Park and A.J. Bard, J. Phys. Chem. C, 2011, 115(25), 12464-12470. https://doi.org/10.1021/jp200852c
  13. G. Binnig, C.F. Quate and Ch. Gerber, Phys. Rev. Lett, 1986, 56(9), 930. https://doi.org/10.1103/PhysRevLett.56.930
  14. C. Kranz, Analyst, 2014, 139(2), 336-352. https://doi.org/10.1039/C3AN01651J
  15. D.J. Comstock, J. W. Elam, M. J. Pellin and M. C. Hersam, Anal. Chem, 2010, 82(4), 1270-1276 . https://doi.org/10.1021/ac902224q
  16. J. Izquierdo, A. Kiss, J. J. Santana, L. Nagy, I. Bitter, H. S. Isaacs, G. Nagy and R. M. Souto, J. Electrochem. Soc, 2013, 160(9), C451- C459. https://doi.org/10.1149/2.001310jes
  17. J. H. Shim and Y. Lee, Anal. Chem, 2009, 81(20), 8571-8576. https://doi.org/10.1021/ac901552m
  18. M. Kang, D. Momotenko, A. Page, D. Perry and P. R. Unwin, Lanmuir, 2016, 32(32), 7993-8008. https://doi.org/10.1021/acs.langmuir.6b01932
  19. E. Lee, M. Kim, J. Seong, H. Shin and G. Lim, Phys. Status Solidi RRL, 2013, 7(6), 406-409. https://doi.org/10.1002/pssr.201307120
  20. E. Lee, J. Sung, T. An, H. Shin, H. G. Nam and G. Lim, Analyst 2015, 140, 3150. https://doi.org/10.1039/C4AN02139H
  21. J. G. Ummadi, C. J. Downs, V. S. Joshi, J. L. Ferracane and D. Koley, Anal. Chem, 2016, 88(6), 3218-3226. https://doi.org/10.1021/acs.analchem.5b04614
  22. Y.-B. Cho, C. Lee and Y. Lee, J. Electrochem. Soc, 2015, 162(10), H792-H798. https://doi.org/10.1149/2.0841510jes
  23. F. Xu, B. Beak and C. Jung, J. Solid State Electrochem, 2012, 16(1), 305-311. https://doi.org/10.1007/s10008-011-1325-8
  24. J. Kumaki, S.-I. Sakurai and E. Yashima, Chem. Soc. Rev, 2009, 38(3), 737-746. https://doi.org/10.1039/b718433f
  25. Y. Liu, Z. Wang and X. Zhang, Chem. Soc. Rev, 2012, 41(18), 5922-5932. https://doi.org/10.1039/c2cs35084j
  26. J. Zhong and D. He, Chem. Eur. J, 2012, 18(14), 4148-4155. https://doi.org/10.1002/chem.201102831
  27. M.I. Giannotti and G.J. Vancso, ChemPhysChem, 2007, 8(16), 2290-2307. https://doi.org/10.1002/cphc.200700175
  28. F. J. Giessibl, S. Hembacher, H. Bielefeldt and J. Bielefeldt, Science, 2000, 289(5478), 422-425. https://doi.org/10.1126/science.289.5478.422
  29. K. J. Neaves, L.P. Cooper, J.H. White, S.M. Carnally, D.T.F. Dryden, J.M. Edwardson and R.M. Henderson, Nucleic Acids Res, 2009, 37(6), 2053-2063. https://doi.org/10.1093/nar/gkp042
  30. A. J. Bard, F.-R. Fan, J. Kwak and O. Lev, Anal. Chem, 1989, 61(2), 132-138. https://doi.org/10.1021/ac00177a011
  31. M. V. Mirkin, W. Nogala, J. Velmurugan and Y. Wang, Phys. Chem. Chem. Phys, 2011, 13(48), 21196-21212. https://doi.org/10.1039/c1cp22376c
  32. Zaera, F. Chem. Rev, 2012, 112(5), 2920-2986. https://doi.org/10.1021/cr2002068
  33. M. E. Snowden, A.G. Guell, S.C.S. Gai, K. McKeley, N. Ebejer, M.A. O'Connell, A.W. Colburn and P.R. Unwin, Anal. Chem, 2012, 84(5), 2483-2491. https://doi.org/10.1021/ac203195h
  34. W. Kylberg, A.J. Wain and F.A. Castro, J. Phys. Chem. C, 2012, 116(33), 17384-17392. https://doi.org/10.1021/jp304599v
  35. C.M. Sanchez-Sanchez, J. Rodriguez-Lopez and A.J. Bard, Anal. Chem, 2008, 80(9), 3254-3260. https://doi.org/10.1021/ac702453n
  36. P. Bertoncello, Energy Environ. Sci. 2010, 3, 1620. https://doi.org/10.1039/c0ee00046a
  37. J.L. Fernandez, D.A. Walsh and A.J. Bard, J. Am. Chem. Soc, 2005, 127(1), 357-365. https://doi.org/10.1021/ja0449729
  38. Y. Cong, H.S. Park, S. Wang, H.X. Dang, F.-R.F. Fan, C.B. Mullins and A.J. Bard, J. Phys. Chem. C, 2012, 116(27), 14541-14550. https://doi.org/10.1021/jp304340a
  39. H.X. Dang, N.T. Hahn, H.S. Park, A.J. Bard and C.B. Mullins, J. Phys. Chem. C, 2012, 116(36), 19225-19232. https://doi.org/10.1021/jp307369z
  40. B.R. Horrocks, M.V. Mirkin and A.J. Bard, J. Phys. Chem, 1994, 98(37), 9106 -9114. https://doi.org/10.1021/j100088a003
  41. W. Liu, H. Ye and A.J. Bard, J. Phys. Chem. C., 2010, 114, 1201. https://doi.org/10.1021/jp909470f
  42. H. Ye, J. Lee, J.S. Jang and A.J. Bard, J. Phys. Chem. C, 2010, 114(31), 13322-13328. https://doi.org/10.1021/jp104343b
  43. H.S. Park, K.E. Kweon, H. Ye, E. Paek, G.S. Hwang and A.J. Bard, J. Phys. Chem. C, 2011, 115(36), 17870-17879. https://doi.org/10.1021/jp204492r
  44. H.S. Park, K.C. Leonard and A.J. Bard, J. Phys. Chem. C, 2013, 117(23), 12093-12102. https://doi.org/10.1021/jp400478z
  45. D. Zigah, J. Rodriguez-Lopez and A.J. Bard, Phys. Chem. Chem. Phys, 2012, 14(37), 12764-12772. https://doi.org/10.1039/c2cp40907k
  46. D. Koley, M.M. Ramsey, A.J. Bard and M. Whiteley, Proc. Natl. Acad. Sci. USA, 2011, 108(50), 19996-20001. https://doi.org/10.1073/pnas.1117298108
  47. D. Koley and A.J. Bard, Proc. Natl. Acad. Sci. USA, 2012, 109(29), 11522-11527. https://doi.org/10.1073/pnas.1201555109
  48. A. J. Bard, F.R.F. Fan, D.T. Pierce, P.R. Unwin, D.O. Wipf and F. Zhou, Science, 1991, 254(5028), 68-74. https://doi.org/10.1126/science.254.5028.68
  49. S. Amemiya, A.J. Bard, F.-R.F. Fan, M.V. Mirkin and P.R. Unwin, Annu. Rev. Anal. Che., 2008, 1, 95-131. https://doi.org/10.1146/annurev.anchem.1.031207.112938
  50. S. Bergner, P. Vatsyayan and F.-M. Matysik, Anal. Chim. Acta, 2013, 775, 1-13. https://doi.org/10.1016/j.aca.2012.12.042
  51. N. Baltes, L. Thouin, C. Amatore and J. Heinze, Angew. Chem. Int. Ed, 2004, 43(11), 1431-1435. https://doi.org/10.1002/anie.200352662
  52. R.T. Kurulugama, D.O. Wipf, S.A. Takacs, S. Pongmayteegul, P.A. Garris and J.E. Baur, Anal. Chem, 2005, 77(4), 1111-1117. https://doi.org/10.1021/ac048571n
  53. X. Xiao, F.-R.F. Fan, J. Zhou and A.J. Bard, J. Am. Chem. Soc, 2008, 130(49), 16669-16677. https://doi.org/10.1021/ja8051393
  54. S.J. Kwon, F.-R.F. Fan and A.J. Bard, J. Am. Chem. Soc, 2010, 132(38), 13165-13167. https://doi.org/10.1021/ja106054c
  55. J.V. Macpherson, P.R. Unwin, A.C. Hillier and A.J. Bard, J. Am. Chem. Soc, 1996, 118(27), 6445-6452. https://doi.org/10.1021/ja960842r
  56. M.A. Derylo, K.C. Morton and L.A. Baker, Langmuir, 2011, 27(22), 13925-13930. https://doi.org/10.1021/la203032u
  57. J. Abbou, C. Demaille, M. Druet and J. Moiroux, Anal. Chem, 2002, 74(24), 6355-6363. https://doi.org/10.1021/ac020385z
  58. K. Huang, A. Anne, M.A. Bahri and C. Demaille, ACS Nano, 2013, 7, 4151. https://doi.org/10.1021/nn400527u
  59. S.N. Thorgaard and P. Buhlmann, Anal. Chem, 2007, 79(23), 9224-9228. https://doi.org/10.1021/ac071307k
  60. A. Anne, E. Cambril, A. Chovin, C. Demaille and C. Goyer, ACS Nano, 2009, 3(10), 2927-2940. https://doi.org/10.1021/nn9009054
  61. M.N. Holder, C.E. Gardner, J.V. Macpherson and P.R. Unwin, J. Electroanal. Chem, 2005, 585(1), 8-18. https://doi.org/10.1016/j.jelechem.2005.07.004
  62. A. Ghorbal, F. Grisotto, J. Charlier, S. Palacin, C. Goyer and C. Demaille, ChemPhysChem, 2009, 10(7), 1053-1057. https://doi.org/10.1002/cphc.200800803
  63. A. Anne, E. Cambril, A. Chovin and C. Demaille, Anal. Chem, 2010, 82(15), 6353-6362. https://doi.org/10.1021/ac1012464